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Preface

This book is the result of a more than thirty year long love affair. In 1972, I took
my first advanced course in electrodynamics at the Department of Theoretical
Physics, Uppsala University. A year later, I joined the research group there and
took on the task of helping my supervisor, professor PER-OLOF FRÖMAN, with
the preparation of a new version of his lecture notes on the Theory of Electricity.
These two things opened up my eyes for the beauty and intricacy of electrody-
namics, already at the classical level, and I fell in love with it. Ever since that
time, I have on and off had reason to return to electrodynamics, both in my stud-
ies, research and the teaching of a course in advanced electrodynamics at Uppsala
University some twenty odd years after I experienced the first encounter with this
subject.

The current version of the book is an outgrowth of the lecture notes that I
prepared for the four-credit course Electrodynamics that was introduced in the
Uppsala University curriculum in 1992, to become the five-credit course Classical
Electrodynamics in 1997. To some extent, parts of these notes were based on
lecture notes prepared, in Swedish, by BENGT LUNDBORG who created, developed
and taught the earlier, two-credit course Electromagnetic Radiation at our faculty.

Intended primarily as a textbook for physics students at the advanced under-
graduate or beginning graduate level, it is hoped that the present book may be
useful for research workers too. It provides a thorough treatment of the theory
of electrodynamics, mainly from a classical field theoretical point of view, and
includes such things as formal electrostatics and magnetostatics and their uni-
fication into electrodynamics, the electromagnetic potentials, gauge transforma-
tions, covariant formulation of classical electrodynamics, force, momentum and
energy of the electromagnetic field, radiation and scattering phenomena, electro-
magnetic waves and their propagation in vacuum and in media, and covariant
Lagrangian/Hamiltonian field theoretical methods for electromagnetic fields, par-
ticles and interactions. The aim has been to write a book that can serve both as
an advanced text in Classical Electrodynamics and as a preparation for studies in
Quantum Electrodynamics and related subjects.

In an attempt to encourage participation by other scientists and students in
the authoring of this book, and to ensure its quality and scope to make it useful
in higher university education anywhere in the world, it was produced within a

xv



Preface

World-Wide Web (WWW) project. This turned out to be a rather successful move.
By making an electronic version of the book freely down-loadable on the net,
comments have been received from fellow Internet physicists around the world
and from WWW ‘hit’ statistics it seems that the book serves as a frequently used
Internet resource.1 This way it is hoped that it will be particularly useful for
students and researchers working under financial or other circumstances that make
it difficult to procure a printed copy of the book.

Thanks are due not only to Bengt Lundborg for providing the inspiration to
write this book, but also to professor CHRISTER WAHLBERG and professor GÖRAN

FÄLDT, Uppsala University, and professor YAKOV ISTOMIN, Lebedev Institute,
Moscow, for interesting discussions on electrodynamics and relativity in general
and on this book in particular. Comments from former graduate students MATTIAS

WALDENVIK, TOBIA CAROZZI and ROGER KARLSSON as well as ANDERS ERIKS-
SON, all at the Swedish Institute of Space Physics in Uppsala and who all have
participated in the teaching on the material covered in the course and in this book
are gratefully acknowledged. Thanks are also due to my long-term space physics
colleague HELMUT KOPKA of the Max-Planck-Institut für Aeronomie, Lindau,
Germany, who not only taught me about the practical aspects of high-power radio
wave transmitters and transmission lines, but also about the more delicate aspects
of typesetting a book in TEX and LATEX. I am particularly indebted to Academician
professor VITALIY LAZAREVICH GINZBURG, 2003 Nobel Laureate in Physics, for
his many fascinating and very elucidating lectures, comments and historical notes
on electromagnetic radiation and cosmic electrodynamics while cruising on the
Volga river at our joint Russian-Swedish summer schools during the 1990s, and
for numerous private discussions over the years.

Finally, I would like to thank all students and Internet users who have down-
loaded and commented on the book during its life on the World-Wide Web.

I dedicate this book to my son MATTIAS, my daughter KAROLINA, my
high-school physics teacher, STAFFAN RÖSBY, and to my fellow members of the
CAPELLA PEDAGOGICA UPSALIENSIS.

Uppsala, Sweden BO THIDÉ

December, 2006 www.physics.irfu.se/∼bt

1At the time of publication of this edition, more than 500 000 downloads have been recorded.
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1
Classical

Electrodynamics

Classical electrodynamics deals with electric and magnetic fields and interactions
caused by macroscopic distributions of electric charges and currents. This means
that the concepts of localised electric charges and currents assume the validity of
certain mathematical limiting processes in which it is considered possible for the
charge and current distributions to be localised in infinitesimally small volumes of
space. Clearly, this is in contradiction to electromagnetism on a truly microscopic
scale, where charges and currents have to be treated as spatially extended objects
and quantum corrections must be included. However, the limiting processes used
will yield results which are correct on small as well as large macroscopic scales.

It took the genius of JAMES CLERK MAXWELL to unify electricity and mag-
netism into a super-theory, electromagnetism or classical electrodynamics (CED),
and to realise that optics is a subfield of this super-theory. Early in the 20th cen-
tury, HENDRIK ANTOON LORENTZ took the electrodynamics theory further to the
microscopic scale and also laid the foundation for the special theory of relativity,
formulated by ALBERT EINSTEIN in 1905. In the 1930s PAUL A. M. DIRAC ex-
panded electrodynamics to a more symmetric form, including magnetic as well
as electric charges. With his relativistic quantum mechanics, he also paved the
way for the development of quantum electrodynamics (QED) for which RICHARD

P. FEYNMAN, JULIAN SCHWINGER, and SIN-ITIRO TOMONAGA in 1965 received
their Nobel prizes in physics. Around the same time, physicists such as SHELDON

GLASHOW, ABDUS SALAM, and STEVEN WEINBERG were able to unify electro-
dynamics the weak interaction theory to yet another super-theory, electroweak
theory, an achievement which rendered them the Nobel prize in physics 1979.
The modern theory of strong interactions, quantum chromodynamics (QCD), is
influenced by QED.

In this chapter we start with the force interactions in classical electrostatics

1



1. Classical Electrodynamics

and classical magnetostatics and introduce the static electric and magnetic fields
to find two uncoupled systems of equations for them. Then we see how the con-
servation of electric charge and its relation to electric current leads to the dynamic
connection between electricity and magnetism and how the two can be unified
into one ‘super-theory’, classical electrodynamics, described by one system of
coupled dynamic field equations—the Maxwell equations.

At the end of this chapter we study Dirac’s symmetrised form of Maxwell’s
equations by introducing (hypothetical) magnetic charges and magnetic currents
into the theory. While not identified unambiguously in experiments yet, mag-
netic charges and currents make the theory much more appealing, for instance by
allowing for duality transformations in a most natural way.

1.1 Electrostatics
The theory which describes physical phenomena related to the interaction be-
tween stationary electric charges or charge distributions in a finite space which
has stationary boundaries is called electrostatics. For a long time, electrostatics,
under the name electricity, was considered an independent physical theory of its
own, alongside other physical theories such as magnetism, mechanics, optics and
thermodynamics.1

1.1.1 Coulomb’s law
It has been found experimentally that in classical electrostatics the interaction
between stationary, electrically charged bodies can be described in terms of a
mechanical force. Let us consider the simple case described by figure 1.1 on
page 3. Let F denote the force acting on a electrically charged particle with charge
q located at x, due to the presence of a charge q′ located at x′. According to
Coulomb’s law this force is, in vacuum, given by the expression

F(x) =
qq′

4πε0

x − x′

|x − x′|3
= −

qq′

4πε0
∇

(
1

|x − x′|

)
=

qq′

4πε0
∇
′

(
1

|x − x′|

)
(1.1)

1The physicist and philosopher PIERRE DUHEM (1861–1916) once wrote:

‘The whole theory of electrostatics constitutes a group of abstract ideas and general propo-
sitions, formulated in the clear and concise language of geometry and algebra, and con-
nected with one another by the rules of strict logic. This whole fully satisfies the reason of
a French physicist and his taste for clarity, simplicity and order. . . .’

2 Version released 16th January 2007 at 20:40. Downloaded from http://www.plasma.uu.se/CED/Book



Electrostatics

q′

q

O

x′

x − x′

x

FIGURE 1.1: Coulomb’s law describes how a static electric charge q, located at
a point x relative to the origin O, experiences an electrostatic force from a static

electric charge q′ located at x′.

where in the last step formula (F.71) on page 177 was used. In SI units, which we
shall use throughout, the force F is measured in Newton (N), the electric charges q
and q′ in Coulomb (C) [= Ampère-seconds (As)], and the length |x − x′| in metres
(m). The constant ε0 = 107/(4πc2) ≈ 8.8542 × 10−12 Farad per metre (F/m) is
the vacuum permittivity and c ≈ 2.9979× 108 m/s is the speed of light in vacuum.
In CGS units ε0 = 1/(4π) and the force is measured in dyne, electric charge in
statcoulomb, and length in centimetres (cm).

1.1.2 The electrostatic field
Instead of describing the electrostatic interaction in terms of a ‘force action at a
distance’, it turns out that it is for most purposes more useful to introduce the
concept of a field and to describe the electrostatic interaction in terms of a static
vectorial electric field Estat defined by the limiting process

Estat def
≡ lim

q→0

F
q

(1.2)

where F is the electrostatic force, as defined in equation (1.1) on page 2, from a
net electric charge q′ on the test particle with a small electric net electric charge
q. Since the purpose of the limiting process is to assure that the test charge q does
not distort the field set up by q′, the expression for Estat does not depend explicitly
on q but only on the charge q′ and the relative radius vector x − x′. This means
that we can say that any net electric charge produces an electric field in the space

Downloaded from http://www.plasma.uu.se/CED/Book Version released 16th January 2007 at 20:40. 3



1. Classical Electrodynamics

that surrounds it, regardless of the existence of a second charge anywhere in this
space.2

Using (1.1) and equation (1.2) on page 3, and formula (F.70) on page 177,
we find that the electrostatic field Estat at the field point x (also known as the
observation point), due to a field-producing electric charge q′ at the source point
x′, is given by

Estat(x) =
q′

4πε0

x − x′

|x − x′|3
= −

q′

4πε0
∇

(
1

|x − x′|

)
=

q′

4πε0
∇
′

(
1

|x − x′|

)
(1.3)

In the presence of several field producing discrete electric charges q′i , located
at the points x′i , i = 1, 2, 3, . . . , respectively, in an otherwise empty space, the as-
sumption of linearity of vacuum3 allows us to superimpose their individual elec-
trostatic fields into a total electrostatic field

Estat(x) =
1

4πε0
∑

i
q′i

x − x′i∣∣x − x′i
∣∣3 (1.4)

If the discrete electric charges are small and numerous enough, we introduce
the electric charge density ρ, measured in C/m3 in SI units, located at x′ within
a volume V ′ of limited extent and replace summation with integration over this
volume. This allows us to describe the total field as

Estat(x) =
1

4πε0

∫
V ′

d3x′ ρ(x′)
x − x′

|x − x′|3
= −

1
4πε0

∫
V ′

d3x′ ρ(x′)∇
(

1
|x − x′|

)
= −

1
4πε0

∇

∫
V ′

d3x′
ρ(x′)
|x − x′|

(1.5)

where we used formula (F.70) on page 177 and the fact that ρ(x′) does not depend
on the unprimed (field point) coordinates on which ∇ operates.

2In the preface to the first edition of the first volume of his book A Treatise on Electricity and Mag-
netism, first published in 1873, James Clerk Maxwell describes this in the following almost poetic manner
[9]:

‘For instance, Faraday, in his mind’s eye, saw lines of force traversing all space where the
mathematicians saw centres of force attracting at a distance: Faraday saw a medium where
they saw nothing but distance: Faraday sought the seat of the phenomena in real actions
going on in the medium, they were satisfied that they had found it in a power of action at
a distance impressed on the electric fluids.’

3In fact, vacuum exhibits a quantum mechanical nonlinearity due to vacuum polarisation effects man-
ifesting themselves in the momentary creation and annihilation of electron-positron pairs, but classically
this nonlinearity is negligible.

4 Version released 16th January 2007 at 20:40. Downloaded from http://www.plasma.uu.se/CED/Book



Electrostatics

V ′

q′i

q

O

x′i

x − x′i

x

FIGURE 1.2: Coulomb’s law for a distribution of individual charges q′i localised
within a volume V ′ of limited extent.

We emphasise that under the assumption of linear superposition, equa-
tion (1.5) on page 4 is valid for an arbitrary distribution of electric charges, in-
cluding discrete charges, in which case ρ is expressed in terms of Dirac delta
distributions:

ρ(x′) =∑
i

q′i δ(x
′ − x′i) (1.6)

as illustrated in figure 1.2. Inserting this expression into expression (1.5) on page 4
we recover expression (1.4) on page 4.

Taking the divergence of the general Estat expression for an arbitrary electric
charge distribution, equation (1.5) on page 4, and using the representation of the
Dirac delta distribution, formula (F.73) on page 177, we find that

∇ · Estat(x) = ∇ ·
1

4πε0

∫
V ′

d3x′ ρ(x′)
x − x′

|x − x′|3

= −
1

4πε0

∫
V ′

d3x′ ρ(x′)∇ · ∇
(

1
|x − x′|

)
= −

1
4πε0

∫
V ′

d3x′ ρ(x′)∇2
(

1
|x − x′|

)
=

1
ε0

∫
V ′

d3x′ ρ(x′) δ(x − x′) =
ρ(x)
ε0

(1.7)

which is the differential form of Gauss’s law of electrostatics.
Since, according to formula (F.62) on page 177, ∇ × [∇α(x)] ≡ 0 for any 3D

Downloaded from http://www.plasma.uu.se/CED/Book Version released 16th January 2007 at 20:40. 5



1. Classical Electrodynamics

R3 scalar field α(x), we immediately find that in electrostatics

∇ × Estat(x) = −
1

4πε0
∇ ×

(
∇

∫
V ′

d3x′
ρ(x′)
|x − x′|

)
= 0 (1.8)

i.e., that Estat is an irrotational field.
To summarise, electrostatics can be described in terms of two vector partial

differential equations

∇ · Estat(x) =
ρ(x)
ε0

(1.9a)

∇ × Estat(x) = 0 (1.9b)

representing four scalar partial differential equations.

1.2 Magnetostatics
While electrostatics deals with static electric charges, magnetostatics deals with
stationary electric currents, i.e., electric charges moving with constant speeds, and
the interaction between these currents. Here we shall discuss this theory in some
detail.

1.2.1 Ampère’s law
Experiments on the interaction between two small loops of electric current have
shown that they interact via a mechanical force, much the same way that electric
charges interact. In figure 1.3 on page 7, let F denote such a force acting on a
small loop C, with tangential line element dl, located at x and carrying a current
I in the direction of dl, due to the presence of a small loop C′, with tangential
line element dl′, located at x′ and carrying a current I′ in the direction of dl′.
According to Ampère’s law this force is, in vacuum, given by the expression

F(x) =
µ0II′

4π

∮
C

dl ×
∮

C′
dl′ ×

x − x′

|x − x′|3

= −
µ0II′

4π

∮
C

dl ×
∮

C′
dl′ × ∇

(
1

|x − x′|

) (1.10)

In SI units, µ0 = 4π × 10−7 ≈ 1.2566 × 10−6 H/m is the vacuum permeability.
From the definition of ε0 and µ0 (in SI units) we observe that

ε0µ0 =
107

4πc2 (F/m) × 4π × 10−7 (H/m) =
1
c2 (s2/m2) (1.11)

6 Version released 16th January 2007 at 20:40. Downloaded from http://www.plasma.uu.se/CED/Book



Magnetostatics

C′

C

I′ dl′
I dl

O

x′

x − x′

x

FIGURE 1.3: Ampère’s law describes how a small loop C, carrying a static
electric current I through its tangential line element dl located at x, experiences
a magnetostatic force from a small loop C′, carrying a static electric current I′

through the tangential line element dl′ located at x′. The loops can have arbitrary
shapes as long as they are simple and closed.

which is a most useful relation.
At first glance, equation (1.10) on page 6may appear unsymmetric in terms of

the loops and therefore to be a force law which is in contradiction with Newton’s
third law. However, by applying the vector triple product ‘bac-cab’ formula (F.51)
on page 176, we can rewrite (1.10) as

F(x) = −
µ0II′

4π

∮
C′

dl′
∮

C
dl · ∇

(
1

|x − x′|

)
−
µ0II′

4π

∮
C

∮
C′

x − x′

|x − x′|3
dl ·dl′

(1.12)

Since the integrand in the first integral is an exact differential, this integral van-
ishes and we can rewrite the force expression, equation (1.10) on page 6, in the
following symmetric way

F(x) = −
µ0II′

4π

∮
C

∮
C′

x − x′

|x − x′|3
dl · dl′ (1.13)

which clearly exhibits the expected symmetry in terms of loops C and C′.

1.2.2 The magnetostatic field
In analogy with the electrostatic case, we may attribute the magnetostatic interac-
tion to a static vectorial magnetic field Bstat. It turns out that the elemental Bstat

Downloaded from http://www.plasma.uu.se/CED/Book Version released 16th January 2007 at 20:40. 7



1. Classical Electrodynamics

can be defined as

dBstat(x)
def
≡
µ0I′

4π
dl′ ×

x − x′

|x − x′|3
(1.14)

which expresses the small element dBstat(x) of the static magnetic field set up at
the field point x by a small line element dl′ of stationary current I′ at the source
point x′. The SI unit for the magnetic field, sometimes called the magnetic flux
density or magnetic induction, is Tesla (T).

If we generalise expression (1.14) to an integrated steady state electric current
density j(x), measured in A/m2 in SI units, we obtain Biot-Savart’s law:

Bstat(x) =
µ0

4π

∫
V ′

d3x′ j(x′) ×
x − x′

|x − x′|3
= −

µ0

4π

∫
V ′

d3x′ j(x′) × ∇
(

1
|x − x′|

)
=
µ0

4π
∇ ×

∫
V ′

d3x′
j(x′)
|x − x′|

(1.15)

where we used formula (F.70) on page 177, formula (F.57) on page 177, and the
fact that j(x′) does not depend on the unprimed coordinates on which ∇ operates.
Comparing equation (1.5) on page 4 with equation (1.15), we see that there exists
a close analogy between the expressions for Estat and Bstat but that they differ
in their vectorial characteristics. With this definition of Bstat, equation (1.10) on
page 6 may we written

F(x) = I
∮

C
dl × Bstat(x) (1.16)

In order to assess the properties of Bstat, we determine its divergence and curl.
Taking the divergence of both sides of equation (1.15) and utilising formula (F.63)
on page 177, we obtain

∇ · Bstat(x) =
µ0

4π
∇ ·

(
∇ ×

∫
V ′

d3x′
j(x′)
|x − x′|

)
= 0 (1.17)

since, according to formula (F.63) on page 177, ∇ · (∇×a) vanishes for any vector
field a(x).

Applying the operator ‘bac-cab’ rule, formula (F.64) on page 177, the curl of
equation (1.15) can be written

∇ × Bstat(x) =
µ0

4π
∇ ×

(
∇ ×

∫
V ′

d3x′
j(x′)
|x − x′|

)
=

= −
µ0

4π

∫
V ′

d3x′ j(x′)∇2
(

1
|x − x′|

)
+
µ0

4π

∫
V ′

d3x′ [j(x′) · ∇′]∇′
(

1
|x − x′|

)
(1.18)
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In the first of the two integrals on the right-hand side, we use the representation
of the Dirac delta function given in formula (F.73) on page 177, and integrate the
second one by parts, by utilising formula (F.56) on page 177 as follows:∫

V ′
d3x′ [j(x′) · ∇′]∇′

(
1

|x − x′|

)
= x̂k

∫
V ′

d3x′∇′ ·
{

j(x′)
[
∂

∂x′k

(
1

|x − x′|

)]}
−

∫
V ′

d3x′
[
∇
′ · j(x′)

]
∇
′

(
1

|x − x′|

)
= x̂k

∫
S ′

d2x′ n̂′ · j(x′)
∂

∂x′k

(
1

|x − x′|

)
−

∫
V ′

d3x′
[
∇
′ · j(x′)

]
∇
′

(
1

|x − x′|

)
(1.19)

Then we note that the first integral in the result, obtained by applying Gauss’s
theorem, vanishes when integrated over a large sphere far away from the localised
source j(x′), and that the second integral vanishes because ∇ · j = 0 for stationary
currents (no charge accumulation in space). The net result is simply

∇ × Bstat(x) = µ0

∫
V ′

d3x′ j(x′)δ(x − x′) = µ0j(x) (1.20)

1.3 Electrodynamics
As we saw in the previous sections, the laws of electrostatics and magnetostatics
can be summarised in two pairs of time-independent, uncoupled vector partial
differential equations, namely the equations of classical electrostatics

∇ · Estat(x) =
ρ(x)
ε0

(1.21a)

∇ × Estat(x) = 0 (1.21b)

and the equations of classical magnetostatics

∇ · Bstat(x) = 0 (1.22a)

∇ × Bstat(x) = µ0j(x) (1.22b)

Since there is nothing a priori which connects Estat directly with Bstat, we must
consider classical electrostatics and classical magnetostatics as two independent
theories.
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However, when we include time-dependence, these theories are unified into
one theory, classical electrodynamics. This unification of the theories of electric-
ity and magnetism is motivated by two empirically established facts:

1. Electric charge is a conserved quantity and electric current is a transport of
electric charge. This fact manifests itself in the equation of continuity and,
as a consequence, in Maxwell’s displacement current.

2. A change in the magnetic flux through a loop will induce an EMF electric
field in the loop. This is the celebrated Faraday’s law of induction.

1.3.1 Equation of continuity for electric charge
Let j(t, x) denote the time-dependent electric current density. In the simplest case
it can be defined as j = vρ where v is the velocity of the electric charge den-
sity ρ. In general, j has to be defined in statistical mechanical terms as j(t, x) =
∑α qα

∫
d3v v fα(t, x, v) where fα(t, x, v) is the (normalised) distribution function for

particle species α with electric charge qα.
The electric charge conservation law can be formulated in the equation of

continuity

∂ρ(t, x)
∂t

+ ∇ · j(t, x) = 0 (1.23)

which states that the time rate of change of electric charge ρ(t, x) is balanced by a
divergence in the electric current density j(t, x).

1.3.2 Maxwell’s displacement current
We recall from the derivation of equation (1.20) on page 9 that there we used the
fact that in magnetostatics ∇ · j(x) = 0. In the case of non-stationary sources
and fields, we must, in accordance with the continuity equation (1.23), set ∇ ·
j(t, x) = −∂ρ(t, x)/∂t. Doing so, and formally repeating the steps in the derivation
of equation (1.20) on page 9, we would obtain the formal result

∇ × B(t, x) = µ0

∫
V ′

d3x′ j(t, x′)δ(x − x′) +
µ0

4π
∂

∂t

∫
V ′

d3x′ ρ(t, x′)∇′
(

1
|x − x′|

)
= µ0j(t, x) + µ0

∂

∂t
ε0E(t, x)

(1.24)
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where, in the last step, we have assumed that a generalisation of equation (1.5) on
page 4 to time-varying fields allows us to make the identification4

1
4πε0

∂

∂t

∫
V ′

d3x′ ρ(t, x′)∇′
(

1
|x − x′|

)
=
∂

∂t

[
−

1
4πε0

∫
V ′

d3x′ ρ(t, x′)∇
(

1
|x − x′|

)]
=
∂

∂t

[
−

1
4πε0

∇

∫
V ′

d3x′
ρ(t, x′)
|x − x′|

]
=
∂

∂t
E(t, x)

(1.25)

The result is Maxwell’s source equation for the B field

∇ × B(t, x) = µ0

(
j(t, x) +

∂

∂t
ε0E(t, x)

)
= µ0j(t, x) +

1
c2

∂

∂t
E(t, x) (1.26)

where the last term ∂ε0E(t, x)/∂t is the famous displacement current. This term
was introduced, in a stroke of genius, by Maxwell [8] in order to make the right
hand side of this equation divergence free when j(t, x) is assumed to represent the
density of the total electric current, which can be split up in ‘ordinary’ conduc-
tion currents, polarisation currents and magnetisation currents. The displacement
current is an extra term which behaves like a current density flowing in vacuum.
As we shall see later, its existence has far-reaching physical consequences as it
predicts the existence of electromagnetic radiation that can carry energy and mo-
mentum over very long distances, even in vacuum.

1.3.3 Electromotive force
If an electric field E(t, x) is applied to a conducting medium, a current density
j(t, x) will be produced in this medium. There exist also hydrodynamical and
chemical processes which can create currents. Under certain physical conditions,
and for certain materials, one can sometimes assume, that, as a first approxima-
tion, a linear relationship exists between the electric current density j and E. This
approximation is called Ohm’s law:

j(t, x) = σE(t, x) (1.27)

where σ is the electric conductivity (S/m). In the most general cases, for instance
in an anisotropic conductor, σ is a tensor.

We can view Ohm’s law, equation (1.27) above, as the first term in a Taylor
expansion of the law j[E(t, x)]. This general law incorporates non-linear effects

4Later, we will need to consider this generalisation and formal identification further.
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such as frequency mixing. Examples of media which are highly non-linear are
semiconductors and plasma. We draw the attention to the fact that even in cases
when the linear relation between E and j is a good approximation, we still have
to use Ohm’s law with care. The conductivity σ is, in general, time-dependent
(temporal dispersive media) but then it is often the case that equation (1.27) on
page 11 is valid for each individual Fourier component of the field.

If the current is caused by an applied electric field E(t, x), this electric field
will exert work on the charges in the medium and, unless the medium is super-
conducting, there will be some energy loss. The rate at which this energy is ex-
pended is j · E per unit volume. If E is irrotational (conservative), j will decay
away with time. Stationary currents therefore require that an electric field which
corresponds to an electromotive force (EMF) is present. In the presence of such a
field EEMF, Ohm’s law, equation (1.27) on page 11, takes the form

j = σ(Estat + EEMF) (1.28)

The electromotive force is defined as

E =

∮
C

dl · (Estat + EEMF) (1.29)

where dl is a tangential line element of the closed loop C.

1.3.4 Faraday’s law of induction
In subsection 1.1.2 we derived the differential equations for the electrostatic field.
In particular, on page 6we derived equation (1.8) which states that∇ × Estat(x) = 0
and thus that Estat is a conservative field (it can be expressed as a gradient of a
scalar field). This implies that the closed line integral of Estat in equation (1.29)
above vanishes and that this equation becomes

E =

∮
C

dl · EEMF (1.30)

It has been established experimentally that a nonconservative EMF field is
produced in a closed circuit C if the magnetic flux through this circuit varies with
time. This is formulated in Faraday’s law which, in Maxwell’s generalised form,
reads

E(t, x) =
∮

C
dl · E(t, x) = −

d
dt
Φm(t, x)

= −
d
dt

∫
S

d2x n̂ · B(t, x) = −
∫

S
d2x n̂ ·

∂

∂t
B(t, x)

(1.31)
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d2x n̂

B(x) B(x)

v

dl
C

FIGURE 1.4: A loop C which moves with velocity v in a spatially varying mag-
netic field B(x) will sense a varying magnetic flux during the motion.

where Φm is the magnetic flux and S is the surface encircled by C which can
be interpreted as a generic stationary ‘loop’ and not necessarily as a conducting
circuit. Application of Stokes’ theorem on this integral equation, transforms it
into the differential equation

∇ × E(t, x) = −
∂

∂t
B(t, x) (1.32)

which is valid for arbitrary variations in the fields and constitutes the Maxwell
equation which explicitly connects electricity with magnetism.

Any change of the magnetic flux Φm will induce an EMF. Let us therefore
consider the case, illustrated if figure 1.4, that the ‘loop’ is moved in such a way
that it links a magnetic field which varies during the movement. The convective
derivative is evaluated according to the well-known operator formula

d
dt
=
∂

∂t
+ v · ∇ (1.33)

which follows immediately from the rules of differentiation of an arbitrary differ-
entiable function f (t, x(t)). Applying this rule to Faraday’s law, equation (1.31)
on page 12, we obtain

E(t, x) = −
d
dt

∫
S

d2x n̂ · B = −
∫

S
d2x n̂ ·

∂B
∂t
−

∫
S

d2x n̂ · (v · ∇)B (1.34)
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During spatial differentiation v is to be considered as constant, and equa-
tion (1.17) on page 8 holds also for time-varying fields:

∇ · B(t, x) = 0 (1.35)

(it is one of Maxwell’s equations) so that, according to formula (F.59) on page 177,

∇ × (B × v) = (v · ∇)B (1.36)

allowing us to rewrite equation (1.34) on page 13 in the following way:

E(t, x) =
∮

C
dl · EEMF = −

d
dt

∫
S

d2x n̂ · B

= −

∫
S

d2x n̂ ·
∂B
∂t
−

∫
S

d2x n̂ · ∇ × (B × v)
(1.37)

With Stokes’ theorem applied to the last integral, we finally get

E(t, x) =
∮

C
dl · EEMF = −

∫
S

d2x n̂ ·
∂B
∂t
−

∮
C

dl · (B × v) (1.38)

or, rearranging the terms,∮
C

dl · (EEMF − v × B) = −
∫

S
d2x n̂ ·

∂B
∂t

(1.39)

where EEMF is the field which is induced in the ‘loop’, i.e., in the moving system.
The use of Stokes’ theorem ‘backwards’ on equation (1.39) above yields

∇ × (EEMF − v × B) = −
∂B
∂t

(1.40)

In the fixed system, an observer measures the electric field

E = EEMF − v × B (1.41)

Hence, a moving observer measures the following Lorentz force on a charge q

qEEMF = qE + q(v × B) (1.42)

corresponding to an ‘effective’ electric field in the ‘loop’ (moving observer)

EEMF = E + v × B (1.43)

Hence, we can conclude that for a stationary observer, the Maxwell equation

∇ × E = −
∂B
∂t

(1.44)

is indeed valid even if the ‘loop’ is moving.
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1.3.5 Maxwell’s microscopic equations
We are now able to collect the results from the above considerations and formulate
the equations of classical electrodynamics valid for arbitrary variations in time and
space of the coupled electric and magnetic fields E(t, x) and B(t, x). The equations
are

∇ · E =
ρ

ε0
(1.45a)

∇ × E = −
∂B
∂t

(1.45b)

∇ · B = 0 (1.45c)

∇ × B = ε0µ0
∂E
∂t
+ µ0j(t, x) (1.45d)

In these equations ρ(t, x) represents the total, possibly both time and space depen-
dent, electric charge, i.e., free as well as induced (polarisation) charges, and j(t, x)
represents the total, possibly both time and space dependent, electric current, i.e.,
conduction currents (motion of free charges) as well as all atomistic (polarisation,
magnetisation) currents. As they stand, the equations therefore incorporate the
classical interaction between all electric charges and currents in the system and
are called Maxwell’s microscopic equations. Another name often used for them
is the Maxwell-Lorentz equations. Together with the appropriate constitutive re-
lations, which relate ρ and j to the fields, and the initial and boundary conditions
pertinent to the physical situation at hand, they form a system of well-posed partial
differential equations which completely determine E and B.

1.3.6 Maxwell’s macroscopic equations
The microscopic field equations (1.45) provide a correct classical picture for arbi-
trary field and source distributions, including both microscopic and macroscopic
scales. However, for macroscopic substances it is sometimes convenient to intro-
duce new derived fields which represent the electric and magnetic fields in which,
in an average sense, the material properties of the substances are already included.
These fields are the electric displacement D and the magnetising field H. In the
most general case, these derived fields are complicated nonlocal, nonlinear func-
tionals of the primary fields E and B:

D = D[t, x; E,B] (1.46a)

H = H[t, x; E,B] (1.46b)

Under certain conditions, for instance for very low field strengths, we may assume
that the response of a substance to the fields may be approximated as a linear one
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so that

D = εE (1.47)

H = µ−1B (1.48)

i.e., that the derived fields are linearly proportional to the primary fields and that
the electric displacement (magnetising field) is only dependent on the electric
(magnetic) field.

The field equations expressed in terms of the derived field quantities D and H
are

∇ · D = ρ(t, x) (1.49a)

∇ × E = −
∂B
∂t

(1.49b)

∇ · B = 0 (1.49c)

∇ ×H =
∂D
∂t
+ j(t, x) (1.49d)

and are called Maxwell’s macroscopic equations. We will study them in more
detail in chapter 4.

1.4 Electromagnetic duality
If we look more closely at the microscopic Maxwell equations (1.45), we see that
they exhibit a certain, albeit not complete, symmetry. Let us follow Dirac and
make the ad hoc assumption that there exist magnetic monopoles represented by
a magnetic charge density, which we denote by ρm = ρm(t, x), and a magnetic
current density, which we denote by jm = jm(t, x). With these new quantities in-
cluded in the theory, and with the electric charge density denoted ρe and the elec-
tric current density denoted je, the Maxwell equations will be symmetrised into
the following two scalar and two vector, coupled, partial differential equations:

∇ · E =
ρe

ε0
(1.50a)

∇ × E = −
∂B
∂t
− µ0jm (1.50b)

∇ · B = µ0ρ
m (1.50c)

∇ × B = ε0µ0
∂E
∂t
+ µ0je (1.50d)
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We shall call these equations Dirac’s symmetrised Maxwell equations or the elec-
tromagnetodynamic equations.

Taking the divergence of (1.50b), we find that

∇ · (∇ × E) = −
∂

∂t
(∇ · B) − µ0∇ · jm ≡ 0 (1.51)

where we used the fact that, according to formula (F.63) on page 177, the diver-
gence of a curl always vanishes. Using (1.50c) to rewrite this relation, we obtain
the magnetic monopole equation of continuity

∂ρm

∂t
+ ∇ · jm = 0 (1.52)

which has the same form as that for the electric monopoles (electric charges) and
currents, equation (1.23) on page 10.

We notice that the new equations (1.50) on page 16 exhibit the following sym-
metry (recall that ε0µ0 = 1/c2):

E→ cB (1.53a)

cB→ −E (1.53b)

cρe → ρm (1.53c)

ρm → −cρe (1.53d)

cje → jm (1.53e)

jm → −cje (1.53f)

which is a particular case (θ = π/2) of the general duality transformation (indicted
by the Hodge star operator ?)

?E = E cos θ + cB sin θ (1.54a)

c?B = −E sin θ + cB cos θ (1.54b)

c?ρe = cρe cos θ + ρm sin θ (1.54c)
?ρm = −cρe sin θ + ρm cos θ (1.54d)

c?je = cje cos θ + jm sin θ (1.54e)
?jm = −cje sin θ + jm cos θ (1.54f)

which leaves the symmetrised Maxwell equations, and hence the physics they
describe (often referred to as electromagnetodynamics), invariant. Since E and je

are (true or polar) vectors, B a pseudovector (axial vector), ρe a (true) scalar, then
ρm and θ, which behaves as a mixing angle in a two-dimensional ‘charge space’,
must be pseudoscalars and jm a pseudovector.
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The invariance of Dirac’s symmetrised Maxwell equations under the similarity
transformation means that the amount of magnetic monopole density ρm is irrele-
vant for the physics as long as the ratio ρm/ρe = tan θ is kept constant. So whether
we assume that the particles are only electrically charged or have also a magnetic
charge with a given, fixed ratio between the two types of charges is a matter of
convention, as long as we assume that this fraction is the same for all particles.
Such particles are referred to as dyons [14]. By varying the mixing angle θ we can
change the fraction of magnetic monopoles at will without changing the laws of
electrodynamics. For θ = 0 we recover the usual Maxwell electrodynamics as we
know it.5
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1.6 Examples

BFARADAY’S LAW AS A CONSEQUENCE OF CONSERVATION OF MAGNETIC CHARGEEXAMPLE 1.1

Postulate 1.1 (Indestructibility of magnetic charge). Magnetic charge exists and is indestruc-
tible in the same way that electric charge exists and is indestructible. In other words we postu-
late that there exists an equation of continuity for magnetic charges:

∂ρm(t, x)
∂t

+ ∇ · jm(t, x) = 0

Use this postulate and Dirac’s symmetrised form of Maxwell’s equations to derive Fara-
day’s law.

The assumption of the existence of magnetic charges suggests a Coulomb-like law for mag-
netic fields:

Bstat(x) =
µ0

4π

∫
V′

d3x′ ρm(x′)
x − x′

|x − x′|3
= −

µ0

4π

∫
V′

d3x′ ρm(x′)∇
(

1
|x − x′|

)
= −

µ0

4π
∇

∫
V′

d3x′
ρm(x′)
|x − x′|

(1.55)

[cf. equation (1.5) on page 4 for Estat] and, if magnetic currents exist, a Biot-Savart-like law for
electric fields [cf. equation (1.15) on page 8 for Bstat]:

Estat(x) = −
µ0

4π

∫
V′

d3x′ jm(x′) ×
x − x′

|x − x′|3
=
µ0

4π

∫
V′

d3x′ jm(x′) × ∇
(

1
|x − x′|

)
= −

µ0

4π
∇ ×

∫
V′

d3x′
jm(x′)
|x − x′|

(1.56)

Taking the curl of the latter and using the operator ‘bac-cab’ rule, formula (F.59) on page 177,
we find that

∇ × Estat(x) = −
µ0

4π
∇ ×

(
∇ ×

∫
V′

d3x′
jm(x′)
|x − x′|

)
=

=
µ0

4π

∫
V′

d3x′ jm(x′)∇2

(
1

|x − x′|

)
−
µ0

4π

∫
V′

d3x′ [jm(x′) · ∇′]∇′
(

1
|x − x′|

) (1.57)

Comparing with equation (1.18) on page 8 for Estat and the evaluation of the integrals there, we
obtain

∇ × Estat(x) = −µ0

∫
V′

d3x′ jm(x′) δ(x − x′) = −µ0jm(x) (1.58)

We assume that formula (1.56) above is valid also for time-varying magnetic currents.
Then, with the use of the representation of the Dirac delta function, equation (F.73) on page 177,
the equation of continuity for magnetic charge, equation (1.52) on page 17, and the assumption
of the generalisation of equation (1.55) to time-dependent magnetic charge distributions, we
obtain, formally,
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∇ × E(t, x) = −µ0

∫
V′

d3x′ jm(t, x′)δ(x − x′) −
µ0

4π
∂

∂t

∫
V′

d3x′ ρm(t, x′)∇′
(

1
|x − x′|

)
= −µ0jm(t, x) −

∂

∂t
B(t, x)

(1.59)

[cf. equation (1.24) on page 10] which we recognise as equation (1.50b) on page 16. A trans-
formation of this electromagnetodynamic result by rotating into the ‘electric realm’ of charge
space, thereby letting jm tend to zero, yields the electrodynamic equation (1.50b) on page 16,
i.e., the Faraday law in the ordinary Maxwell equations. This process also provides an alter-
native interpretation of the term ∂B/∂t as a magnetic displacement current, dual to the electric
displacement current [cf. equation (1.26) on page 11].

By postulating the indestructibility of a hypothetical magnetic charge, we have thereby been
able to replace Faraday’s experimental results on electromotive forces and induction in loops as
a foundation for the Maxwell equations by a more appealing one.

C END OF EXAMPLE 1.1

BDUALITY OF THE ELECTROMAGNETODYNAMIC EQUATIONS EXAMPLE 1.2

Show that the symmetric, electromagnetodynamic form of Maxwell’s equations (Dirac’s
symmetrised Maxwell equations), equations (1.50) on page 16, are invariant under the duality
transformation (1.54).

Explicit application of the transformation yields

∇ · ?E = ∇ · (E cos θ + cB sin θ) =
ρe

ε0
cos θ + cµ0ρ

m sin θ

=
1
ε0

(
ρe cos θ +

1
c
ρm sin θ

)
=

?ρe

ε0

(1.60)

∇ ×
?E +

∂?B
∂t
= ∇ × (E cos θ + cB sin θ) +

∂

∂t

(
−

1
c

E sin θ + B cos θ
)

= −µ0jm cos θ −
∂B
∂t

cos θ + cµ0je sin θ +
1
c
∂E
∂t

sin θ

−
1
c
∂E
∂t

sin θ +
∂B
∂t

cos θ = −µ0jm cos θ + cµ0je sin θ

= −µ0(−cje sin θ + jm cos θ) = −µ0
?jm

(1.61)

∇ · ?B = ∇ · (−
1
c

E sin θ + B cos θ) = −
ρe

cε0
sin θ + µ0ρ

m cos θ

= µ0 (−cρe sin θ + ρm cos θ) = µ0
?ρm

(1.62)

∇ ×
?B −

1
c2

∂?E
∂t
= ∇ × (−

1
c

E sin θ + B cos θ) −
1
c2

∂

∂t
(E cos θ + cB sin θ)

=
1
c
µ0jm sin θ +

1
c
∂B
∂t

cos θ + µ0je cos θ +
1
c2

∂E
∂t

cos θ

−
1
c2

∂E
∂t

cos θ −
1
c
∂B
∂t

sin θ

= µ0

(
1
c

jm sin θ + je cos θ
)
= µ0

?je

(1.63)

Downloaded from http://www.plasma.uu.se/CED/Book Version released 16th January 2007 at 20:40. 21



1. Classical Electrodynamics

QED �

C END OF EXAMPLE 1.2

BDIRAC’S SYMMETRISED MAXWELL EQUATIONS FOR A FIXED MIXING ANGLEEXAMPLE 1.3

Show that for a fixed mixing angle θ such that

ρm = cρe tan θ (1.64a)

jm = cje tan θ (1.64b)

the symmetrised Maxwell equations reduce to the usual Maxwell equations.

Explicit application of the fixed mixing angle conditions on the duality transformation
(1.54) on page 17 yields

?ρe = ρe cos θ +
1
c
ρm sin θ = ρe cos θ +

1
c

cρe tan θ sin θ

=
1

cos θ
(ρe cos2 θ + ρe sin2 θ) =

1
cos θ

ρe
(1.65a)

?ρm = −cρe sin θ + cρe tan θ cos θ = −cρe sin θ + cρe sin θ = 0 (1.65b)

?je = je cos θ + je tan θ sin θ =
1

cos θ
(je cos2 θ + je sin2 θ) =

1
cos θ

je (1.65c)

?jm = −cje sin θ + cje tan θ cos θ = −cje sin θ + cje sin θ = 0 (1.65d)

Hence, a fixed mixing angle, or, equivalently, a fixed ratio between the electric and magnetic
charges/currents, ‘hides’ the magnetic monopole influence (ρm and jm) on the dynamic equa-
tions.

We notice that the inverse of the transformation given by equation (1.54) on page 17 yields

E = ?E cos θ − c?B sin θ (1.66)

This means that

∇ · E = ∇ · ?E cos θ − c∇ · ?B sin θ (1.67)

Furthermore, from the expressions for the transformed charges and currents above, we find that

∇ · ?E =
?ρe

ε0
=

1
cos θ

ρe

ε0
(1.68)

and

∇ · ?B = µ0
?ρm = 0 (1.69)

so that

∇ · E =
1

cos θ
ρe

ε0
cos θ − 0 =

ρe

ε0
(1.70)

and so on for the other equations. QED �

C END OF EXAMPLE 1.3
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BCOMPLEX FIELD SIX-VECTOR FORMALISM EXAMPLE 1.4

It is sometimes convenient to introduce the complex field six-vector or Riemann-Silberstein
vector

G(t, x) = E(t, x) + icB(t, x) (1.71)

where E,B ∈ R3 and hence G ∈ C3. One fundamental property of C3 is that inner (scalar)
products in this space are invariant just as they are in R3. However, as discussed in example M.3
on page 193, the inner (scalar) product in C3 can be defined in two different ways. Considering
the special case of the scalar product of G with itself, we have the following two possibilities
of defining (the square of) the ‘length’ of G or

1. The inner (scalar) product defined as G scalar multiplied with itself

G ·G = (E + icB) · (E + icB) = E2 − c2B2 + 2icE · B (1.72)

Since this is an invariant scalar quantity, we find that

E2 − c2B2 = Const (1.73a)

E · B = Const (1.73b)

2. The inner (scalar) product defined as G scalar multiplied with the complex conjugate of
itself

G ·G∗ = (E + icB) · (E − icB) = E2 + c2B2 (1.74)

which is also an invariant scalar quantity. As we shall see later, this quantity is pro-
portional to the electromagnetic field energy density, and the field energy is indeed a
conserved quantity.

3. As with any vector, the cross product of G with itself vanishes:

G ×G = (E + icB) × (E + icB)

= E × E − c2B × B + ic(E × B) + ic(B × E)

= 0 + 0 + ic(E × B) − ic(E × B) = 0
(1.75)

4. The cross product of G with the complex conjugate of itself

G ×G∗ = (E + icB) × (E − icB)

= E × E + c2B × B − ic(E × B) + ic(B × E)

= 0 + 0 − ic(E × B) − ic(E × B) = −2ic(E × B)

(1.76)

is proportional to the electromagnetic power flux, to be introduced later.

C END OF EXAMPLE 1.4
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BDUALITY EXPRESSED IN THE RIEMANN-SILBERSTEIN VECTOREXAMPLE 1.5

Expressed in the Riemann-Silberstein vector, introduced in example 1.4 on page 23, the
duality transformation equations (1.54) on page 17 become

?G = ?E + ic?B = E cos θ + cB sin θ − iE sin θ + icB cos θ

= E(cos θ − i sin θ) + icB(cos θ − i sin θ) = e−iθ(E + icB) = e−iθG
(1.77)

from which it is easy to see that

?G · ?G∗ =
∣∣?G
∣∣2 = e−iθG · eiθG∗ = |G|2 (1.78)

while

?G · ?G = e−2iθG ·G (1.79)

Furthermore, assuming that θ = θ(t, x), we see that the spatial and temporal differentiation
of ?G leads to

∂t
?G ≡

∂?G
∂t
= −i(∂tθ)e−iθG + e−iθ∂tG (1.80a)

∂ · ?G ≡ ∇ · ?G = −ie−iθ
∇θ ·G + e−iθ

∇ ·G (1.80b)

∂ × ?G ≡ ∇ × ?G = −ie−iθ
∇θ ×G + e−iθ

∇ ×G (1.80c)

which means that ∂t
?G transforms as ?G itself only if θ is time-independent, and that ∇ · ?G

and ∇ × ?G transform as ?G itself only if θ is space-independent.

C END OF EXAMPLE 1.5
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2
Electromagnetic

Waves

In this chapter we investigate the dynamical properties of the electromagnetic field
by deriving a set of equations which are alternatives to the Maxwell equations. It
turns out that these alternative equations are wave equations, indicating that elec-
tromagnetic waves are natural and common manifestations of electrodynamics.

Maxwell’s microscopic equations [cf. equations (1.45) on page 15] are

∇ · E =
ρ(t, x)
ε0

(Gauss’s law) (2.1a)

∇ × E = −
∂B
∂t

(Faraday’s law) (2.1b)

∇ · B = 0 (No free magnetic charges) (2.1c)

∇ × B = µ0j(t, x) + ε0µ0
∂E
∂t

(Maxwell’s law) (2.1d)

and can be viewed as an axiomatic basis for classical electrodynamics. They de-
scribe, in scalar and vector differential equation form, the electric and magnetic
fields E and B produced by given, prescribed charge distributions ρ(t, x) and cur-
rent distributions j(t, x) with arbitrary time and space dependences.

However, as is well known from the theory of differential equations, these four
first order, coupled partial differential vector equations can be rewritten as two un-
coupled, second order partial equations, one for E and one for B. We shall derive
these second order equations which, as we shall see are wave equations, and then
discuss the implications of them. We show that for certain media, the B wave field
can be easily obtained from the solution of the E wave equation.

25



2. Electromagnetic Waves

2.1 The wave equations
We restrict ourselves to derive the wave equations for the electric field vector E
and the magnetic field vector B in an electrically neutral region, i.e., a volume
where there is no net charge, ρ = 0, and no electromotive force EEMF = 0.

2.1.1 The wave equation for E
In order to derive the wave equation for E we take the curl of (2.1b) and use (2.1d),
to obtain

∇ × (∇ × E) = −
∂

∂t
(∇ × B) = −µ0

∂

∂t

(
j + ε0

∂

∂t
E
)

(2.2)

According to the operator triple product ‘bac-cab’ rule equation (F.64) on page 177

∇ × (∇ × E) = ∇(∇ · E) − ∇2E (2.3)

Furthermore, since ρ = 0, equation (2.1a) on page 25 yields

∇ · E = 0 (2.4)

and since EEMF = 0, Ohm’s law, equation (1.28) on page 12, allows us to use the
approximation

j = σE (2.5)

we find that equation (2.2) above can be rewritten

∇2E − µ0
∂

∂t

(
σE + ε0

∂

∂t
E
)
= 0 (2.6)

or, also using equation (1.11) on page 6 and rearranging,

∇2E − µ0σ
∂E
∂t
−

1
c2

∂2E
∂t2 = 0 (2.7)

which is the homogeneous wave equation for E in a uncharged, conducting medium
without EMF. For waves propagating in vacuum (no charges, no currents), the
wave equation for E is

∇2E −
1
c2

∂2E
∂t2 = −�

2E = 0 (2.8)

where �2 is the d’Alembert operator, defined according to formula (M.93) on
page 194.
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The wave equations

2.1.2 The wave equation for B
The wave equation for B is derived in much the same way as the wave equation
for E. Take the curl of (2.1d) and use Ohm’s law j = σE to obtain

∇ × (∇ × B) = µ0∇ × j + ε0µ0
∂

∂t
(∇ × E) = µ0σ∇ × E + ε0µ0

∂

∂t
(∇ × E)

(2.9)

which, with the use of equation (F.64) on page 177 and equation (2.1c) on page 25
can be rewritten

∇(∇ · B) − ∇2B = −µ0σ
∂B
∂t
− ε0µ0

∂2

∂t2 B (2.10)

Using the fact that, according to (2.1c), ∇ ·B = 0 for any medium and rearranging,
we can rewrite this equation as

∇2B − µ0σ
∂B
∂t
−

1
c2

∂2B
∂t2 = 0 (2.11)

This is the wave equation for the magnetic field. For waves propagating in vacuum
(no charges, no currents), the wave equation for B is

∇2B −
1
c2

∂2B
∂t2 = −�

2B = 0 (2.12)

We notice that for the simple propagation media considered here, the wave
equations for the magnetic field B has exactly the same mathematical form as the
wave equation for the electric field E, equation (2.7) on page 26. Therefore, it suf-
fices to consider only the E field, since the results for the B field follow trivially.
For EM waves propagating in more complicated media, containing, eg., inhomo-
geneities, the wave equation for E and for B do not have the same mathematical
form.

2.1.3 The time-independent wave equation for E
If we assume that the temporal dependence of E (and B) is well-behaved enough
that it can be represented by a sum of a finite number of temporal spectral (Fourier)
components, i.e., in the form of a temporal Fourier series, then it is sufficient to
represent the electric field by one of these Fourier components

E(t, x) = E0(x) cos(ωt) = E0(x)Re
{

e−iωt} (2.13)

since the general solution is obtained by a linear superposition (summation) of the
result for one such spectral (Fourier) component, often called a time-harmonic
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wave. When we insert this, in complex notation, into equation (2.7) on page 26
we find that

∇2E0(x)e−iωt − µ0σ
∂

∂t
E0(x)e−iωt −

1
c2

∂2

∂t2 E0(x)e−iωt

= ∇2E0(x)e−iωt − µ0σ(−iω)E0(x)e−iωt −
1
c2 (−iω)2E0(x)e−iωt

(2.14)

or, dividing out the common factor e−iωt and rewriting,

∇2E0 +
ω2

c2

(
1 + i

σ

ε0ω

)
E0 = 0 (2.15)

Multiplying by e−iωt and introducing the relaxation time τ = ε0/σ of the medium
in question, we see that the differential equation for the time-harmonic wave can
be written

∇2E(t, x) +
ω2

c2

(
1 +

i
τω

)
E(t, x) = 0 (2.16)

In the limit of very many frequency components the Fourier sum goes over
into a Fourier integral. To illustrate this general case, let us introduce the Fourier
transform of E(t, x)

F [E(t, x)]
def
≡ Ew(x) =

1
2π

∫ ∞
−∞

dt E(t, x) eiωt (2.17)

and the corresponding inverse Fourier transform

F −1[Eω(x)]
def
≡ E(t, x) =

∫ ∞
−∞

dωEω(x) e−iωt (2.18)

Then we find that the Fourier transform of ∂E(t, x)/∂t becomes

F

[
∂E(t, x)
∂t

]
def
≡

1
2π

∫ ∞
−∞

dt
(
∂E(t, x)
∂t

)
eiωt

=
1

2π
[
E(t, x) eiωt]∞

−∞︸               ︷︷               ︸
=0

−iω
1

2π

∫ ∞
−∞

dt E(t, x) eiωt

= − iωEω(x)

(2.19)

and that, consequently,

F

[
∂2E(t, x)
∂t2

]
def
≡

1
2π

∫ ∞
−∞

dt
(
∂2E(t, x)
∂t2

)
eiωt = −ω2Eω(x) (2.20)
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The wave equations

Fourier transforming equation (2.7) on page 26 and using (2.19) and (2.20), we
obtain

∇2Eω +
ω2

c2

(
1 +

i
τω

)
Eω = 0 (2.21)

A subsequent inverse Fourier transformation of the solution Eω of this equation
leads to the same result as is obtained from the solution of equation (2.16) on
page 28. I.e., by considering just one Fourier component we obtain the results
which are identical to those that we would have obtained by employing the heavy
machinery of Fourier transforms and Fourier integrals. Hence, under the assump-
tion of linearity (superposition principle) there is no need for the heavy, time-
consuming forward and inverse Fourier transform machinery.

In the limit of long τ, (2.16) tends to

∇2E +
ω2

c2 E = 0 (2.22)

which is a time-independent wave equation for E, representing undamped propa-
gating waves. In the short τ limit we have instead

∇2E + iωµ0σE = 0 (2.23)

which is a time-independent diffusion equation for E.
For most metals τ ∼ 10−14 s, which means that the diffusion picture is good for

all frequencies lower than optical frequencies. Hence, in metallic conductors, the
propagation term ∂2E/c2∂t2 is negligible even for VHF, UHF, and SHF signals.
Alternatively, we may say that the displacement current ε0∂E/∂t is negligible rel-
ative to the conduction current j = σE.

If we introduce the vacuum wave number

k =
ω

c
(2.24)

we can write, using the fact that c = 1/
√
ε0µ0 according to equation (1.11) on

page 6,

1
τω
=

σ

ε0ω
=
σ

ε0

1
ck
=
σ

k

√
µ0

ε0
=
σ

k
R0 (2.25)

where in the last step we introduced the characteristic impedance for vacuum

R0 =

√
µ0

ε0
≈ 376.7Ω (2.26)
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2.2 Plane waves
Consider now the case where all fields depend only on the distance ζ to a given
plane with unit normal n̂. Then the del operator becomes

∇ = n̂
∂

∂ζ
= n̂∇ (2.27)

and Maxwell’s equations attain the form

n̂ ·
∂E
∂ζ
= 0 (2.28a)

n̂×
∂E
∂ζ
= −

∂B
∂t

(2.28b)

n̂ ·
∂B
∂ζ
= 0 (2.28c)

n̂×
∂B
∂ζ
= µ0j(t, x) + ε0µ0

∂E
∂t
= µ0σE + ε0µ0

∂E
∂t

(2.28d)

Scalar multiplying (2.28d) by n̂, we find that

0 = n̂ ·
(

n̂×
∂B
∂ζ

)
= n̂ ·

(
µ0σ + ε0µ0

∂

∂t

)
E (2.29)

which simplifies to the first-order ordinary differential equation for the normal
component En of the electric field

dEn

dt
+
σ

ε0
En = 0 (2.30)

with the solution

En = En0 e−σt/ε0 = En0 e−t/τ (2.31)

This, together with (2.28a), shows that the longitudinal component of E, i.e., the
component which is perpendicular to the plane surface is independent of ζ and has
a time dependence which exhibits an exponential decay, with a decrement given
by the relaxation time τ in the medium.

Scalar multiplying (2.28b) by n̂, we similarly find that

0 = n̂ ·
(

n̂×
∂E
∂ζ

)
= −n̂ ·

∂B
∂t

(2.32)

or

n̂ ·
∂B
∂t
= 0 (2.33)

From this, and (2.28c), we conclude that the only longitudinal component of B
must be constant in both time and space. In other words, the only non-static
solution must consist of transverse components.
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Plane waves

2.2.1 Telegrapher’s equation
In analogy with equation (2.7) on page 26, we can easily derive the equation

∂2E
∂ζ2 − µ0σ

∂E
∂t
−

1
c2

∂2E
∂t2 = 0 (2.34)

This equation, which describes the propagation of plane waves in a conducting
medium, is called the telegrapher’s equation. If the medium is an insulator so that
σ = 0, then the equation takes the form of the one-dimensional wave equation

∂2E
∂ζ2 −

1
c2

∂2E
∂t2 = 0 (2.35)

As is well known, each component of this equation has a solution which can be
written

Ei = f (ζ − ct) + g(ζ + ct), i = 1, 2, 3 (2.36)

where f and g are arbitrary (non-pathological) functions of their respective argu-
ments. This general solution represents perturbations which propagate along ζ,
where the f perturbation propagates in the positive ζ direction and the g perturba-
tion propagates in the negative ζ direction.

If we assume that our electromagnetic fields E and B are time-harmonic,
i.e., that they can each be represented by a Fourier component proportional to
exp{−iωt}, the solution of equation (2.35) above becomes

E = E0e−i(ωt±kζ) = E0ei(∓kζ−ωt) (2.37)

By introducing the wave vector

k = kn̂ =
ω

c
n̂ =

ω

c
k̂ (2.38)

this solution can be written as

E = E0ei(k·x−ωt) (2.39)

Let us consider the lower sign in front of kζ in the exponent in (2.37). This
corresponds to a wave which propagates in the direction of increasing ζ. Inserting
this solution into equation (2.28b) on page 30, gives

n̂×
∂E
∂ζ
= iωB = ikn̂× E (2.40)

or, solving for B,

B =
k
ω

n̂× E =
1
ω

k × E =
1
c

k̂ × E =
√
ε0µ0 n̂× E (2.41)

Hence, to each transverse component of E, there exists an associated magnetic
field given by equation (2.41) above. If E and/or B has a direction in space which
is constant in time, we have a plane wave.
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2.2.2 Waves in conductive media
Assuming that our medium has a finite conductivity σ, and making the time-
harmonic wave Ansatz in equation (2.34) on page 31, we find that the time-
independent telegrapher’s equation can be written

∂2E
∂ζ2 + ε0µ0ω

2E + iµ0σωE =
∂2E
∂ζ2 + K2E = 0 (2.42)

where

K2 = ε0µ0ω
2
(

1 + i
σ

ε0ω

)
=
ω2

c2

(
1 + i

σ

ε0ω

)
= k2

(
1 + i

σ

ε0ω

)
(2.43)

where, in the last step, equation (2.24) on page 29 was used to introduce the wave
number k. Taking the square root of this expression, we obtain

K = k
√

1 + i
σ

ε0ω
= α + iβ (2.44)

Squaring, one finds that

k2
(

1 + i
σ

ε0ω

)
= (α2 − β2) + 2iαβ (2.45)

or

β2 = α2 − k2 (2.46)

αβ =
k2σ

2ε0ω
(2.47)

Squaring the latter and combining with the former, one obtains the second order
algebraic equation (in α2)

α2(α2 − k2) =
k4σ2

4ε2
0ω

2 (2.48)

which can be easily solved and one finds that

α = k

√√√√√
√

1 +
(

σ
ε0ω

)2
+ 1

2
(2.49a)

β = k

√√√√√
√

1 +
(

σ
ε0ω

)2
− 1

2
(2.49b)
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As a consequence, the solution of the time-independent telegrapher’s equation,
equation (2.42) on page 32, can be written

E = E0e−βζei(αζ−ωt) (2.50)

With the aid of equation (2.41) on page 31 we can calculate the associated mag-
netic field, and find that it is given by

B =
1
ω

K k̂ × E =
1
ω

(k̂ × E)(α + iβ) =
1
ω

(k̂ × E) |A| eiγ (2.51)

where we have, in the last step, rewritten α + iβ in the amplitude-phase form
|A| exp{iγ}. From the above, we immediately see that E, and consequently also B,
is damped, and that E and B in the wave are out of phase.

In the limit ε0ω � σ, we can approximate K as follows:

K = k
(

1 + i
σ

ε0ω

) 1
2

= k
[

i
σ

ε0ω

(
1 − i

ε0ω

σ

)] 1
2

≈ k(1 + i)
√

σ

2ε0ω

=
√
ε0µ0ω(1 + i)

√
σ

2ε0ω
= (1 + i)

√
µ0σω

2

(2.52)

In this limit we find that when the wave impinges perpendicularly upon the medium,
the fields are given, inside the medium, by

E′ = E0 exp
{
−

√
µ0σω

2
ζ

}
exp

{
i
(√

µ0σω

2
ζ − ωt

)}
(2.53a)

B′ = (1 + i)
√
µ0σ

2ω
(n̂× E′) (2.53b)

Hence, both fields fall off by a factor 1/e at a distance

δ =

√
2

µ0σω
(2.54)

This distance δ is called the skin depth.

2.3 Observables and averages
In the above we have used complex notation quite extensively. This is for mathe-
matical convenience only. For instance, in this notation differentiations are almost
trivial to perform. However, every physical measurable quantity is always real
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2. Electromagnetic Waves

valued. I.e., ‘Ephysical = Re {Emathematical}’. It is particularly important to remem-
ber this when one works with products of physical quantities. For instance, if
we have two physical vectors F and G which both are time-harmonic, i.e., can be
represented by Fourier components proportional to exp{−iωt}, then we must make
the following interpretation

F(t, x) ·G(t, x) = Re {F} · Re {G} = Re
{

F0(x) e−iωt} · Re
{

G0(x) e−iωt}
(2.55)

Furthermore, letting ∗ denote complex conjugate, we can express the real part of
the complex vector F as

Re {F} = Re
{

F0(x) e−iωt} = 1
2

[F0(x) e−iωt + F∗0(x) eiωt] (2.56)

and similarly for G. Hence, the physically acceptable interpretation of the scalar
product of two complex vectors, representing physical observables, is

F(t, x) ·G(t, x) = Re
{

F0(x) e−iωt} · Re
{

G0(x) e−iωt}
=

1
2

[F0(x) e−iωt + F∗0(x) eiωt] ·
1
2

[G0(x) e−iωt +G∗0(x) eiωt]

=
1
4
(
F0 ·G∗0 + F∗0 ·G0 + F0 ·G0 e−2iωt + F∗0 ·G

∗
0 e2iωt)

=
1
2

Re
{

F0 ·G∗0 + F0 ·G0 e−2iωt}
=

1
2

Re
{

F0 e−iωt ·G∗0 eiωt + F0 ·G0 e−2iωt}
=

1
2

Re
{

F(t, x) ·G∗(t, x) + F0 ·G0 e−2iωt}
(2.57)

Often in physics, we measure temporal averages (〈 〉) of our physical observ-
ables. If so, we see that the average of the product of the two physical quantities
represented by F and G can be expressed as

〈F ·G〉 ≡ 〈Re {F} · Re {G}〉 =
1
2

Re {F ·G∗} =
1
2

F ·G∗ =
1
2

F∗ ·G (2.58)

since the temporal average of the oscillating function exp{−2iωt} vanishes.
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2. Electromagnetic Waves

2.5 Example

BWAVE EQUATIONS IN ELECTROMAGNETODYNAMICSEXAMPLE 2.1

Derive the wave equation for the E field described by the electromagnetodynamic equations
(Dirac’s symmetrised Maxwell equations) [cf. equations (1.50) on page 16]

∇ · E =
ρe

ε0
(2.59a)

∇ × E = −
∂B
∂t
− µ0jm (2.59b)

∇ · B = µ0ρ
m (2.59c)

∇ × B = ε0µ0
∂E
∂t
+ µ0je (2.59d)

under the assumption of vanishing net electric and magnetic charge densities and in the absence
of electromotive and magnetomotive forces. Interpret this equation physically.

Taking the curl of (2.59b) and using (2.59d), and assuming, for symmetry reasons, that
there exists a linear relation between the magnetic current density jm and the magnetic field B
(the analogue of Ohm’s law for electric currents, je = σeE)

jm = σmB (2.60)

one finds, noting that ε0µ0 = 1/c2, that

∇ × (∇ × E) = −µ0∇ × jm −
∂

∂t
(∇ × B) = −µ0σ

m
∇ × B −

∂

∂t

(
µ0je +

1
c2

∂E
∂t

)
= −µ0σ

m

(
µ0σ

eE +
1
c2

∂E
∂t

)
− µ0σ

e ∂E
∂t
−

1
c2

∂2E
∂t2

(2.61)

Using the vector operator identity ∇ × (∇ × E) = ∇(∇ · E) − ∇2E, and the fact that ∇ · E = 0
for a vanishing net electric charge, we can rewrite the wave equation as

∇2E − µ0

(
σe +

σm

c2

)
∂E
∂t
−

1
c2

∂2E
∂t2 − µ

2
0σ

mσeE = 0 (2.62)

This is the homogeneous electromagnetodynamic wave equation for E we were after.

Compared to the ordinary electrodynamic wave equation for E, equation (2.7) on page 26,
we see that we pick up extra terms. In order to understand what these extra terms mean phys-
ically, we analyse the time-independent wave equation for a single Fourier component. Then
our wave equation becomes

∇2E + iωµ0

(
σe +

σm

c2

)
E +

ω2

c2 E − µ2
0σ

mσeE

= ∇2E +
ω2

c2

[(
1 −

1
ω2

µ0

ε0
σmσe

)
+ i

σe + σm/c2

ε0ω

]
E = 0

(2.63)

Realising that, according to formula (2.26) on page 29, µ0/ε0 is the square of the vacuum
radiation resistance R0, and rearranging a bit, we obtain the time-independent wave equation in
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Dirac’s symmetrised electrodynamics

∇2E +
ω2

c2

(
1 −

R2
0

ω2σ
mσe

)1 + i
σe + σm/c2

ε0ω
(

1 − R2
0

ω2σmσe
)
E = 0 (2.64)

From this equation we conclude that the existence of magnetic charges (magnetic monopoles),
and non-vanishing electric and magnetic conductivities would lead to a shift in the effective
wave number of the wave. Furthermore, even if the electric conductivity σe vanishes, the
imaginary term does not necessarily vanish and the wave might therefore experience damping
(or growth) according as σm is positive (or negative). This would happen in a hypothetical
medium which is a perfect insulator for electric currents but which can carry magnetic currents.

Finally, we note that in the particular case that ω = R0
√
σmσe, the wave equation becomes

a (time-independent) diffusion equation

∇2E + iωµ0

(
σe +

σm

c2

)
E = 0 (2.65)

and, hence, no waves exist at all!

C END OF EXAMPLE 2.1
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Potentials

As an alternative to expressing the laws of electrodynamics in terms of electric and
magnetic fields, it turns out that it is often more convenient to express the theory
in terms of potentials. This is particularly true for problems related to radiation. In
this chapter we will introduce and study the properties of such potentials and shall
find that they exhibit some remarkable properties which elucidate the fundamental
aspects of electromagnetism and lead naturally to the special theory of relativity.

3.1 The electrostatic scalar potential
As we saw in equation (1.8) on page 6, the electrostatic field Estat(x) is irrotational.
Hence, it may be expressed in terms of the gradient of a scalar field. If we denote
this scalar field by −φstat(x), we get

Estat(x) = −∇φstat(x) (3.1)

Taking the divergence of this and using equation (1.7) on page 5, we obtain Pois-
son’s equation

∇2φstat(x) = −∇ · Estat(x) = −
ρ(x)
ε0

(3.2)

A comparison with the definition of Estat, namely equation (1.5) on page 4, shows
that this equation has the solution

φstat(x) =
1

4πε0

∫
V ′

d3x′
ρ(x′)
|x − x′|

+ α (3.3)
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3. Electromagnetic Potentials

where the integration is taken over all source points x′ at which the charge density
ρ(x′) is non-zero and α is an arbitrary quantity which has a vanishing gradient.
An example of such a quantity is a scalar constant. The scalar function φstat(x) in
equation (3.3) on page 39 is called the electrostatic scalar potential.

3.2 The magnetostatic vector potential
Consider the equations of magnetostatics (1.22) on page 9. From equation (F.63)
on page 177 we know that any 3D vector a has the property that ∇ · (∇ × a) ≡ 0
and in the derivation of equation (1.17) on page 8 in magnetostatics we found that
∇ · Bstat(x) = 0. We therefore realise that we can always write

Bstat(x) = ∇ × Astat(x) (3.4)

where Astat(x) is called the magnetostatic vector potential.
We saw above that the electrostatic potential (as any scalar potential) is not

unique: we may, without changing the physics, add to it a quantity whose spatial
gradient vanishes. A similar arbitrariness is true also for the magnetostatic vector
potential.

In the magnetostatic case, we may start from Biot-Savart’s law as expressed by
equation (1.15) on page 8. Identifying this expression with equation (3.4) allows
us to define the static vector potential as

Astat(x) =
µ0

4π

∫
V ′

d3x′
j(x′)
|x − x′|

+ a(x) (3.5)

where a(x) is an arbitrary vector field whose curl vanishes. From equation (F.62)
on page 177 we know that such a vector can always be written as the gradient of
a scalar field.

3.3 The electrodynamic potentials
Let us now generalise the static analysis above to the electrodynamic case, i.e.,
the case with temporal and spatial dependent sources ρ(t, x) and j(t, x), and cor-
responding fields E(t, x) and B(t, x), as described by Maxwell’s equations (1.45)
on page 15. In other words, let us study the electrodynamic potentials φ(t, x) and
A(t, x).
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Gauge transformations

From equation (1.45c) on page 15 we note that also in electrodynamics the
homogeneous equation ∇ · B(t, x) = 0 remains valid. Because of this divergence-
free nature of the time- and space-dependent magnetic field, we can express it as
the curl of an electromagnetic vector potential:

B(t, x) = ∇ × A(t, x) (3.6)

Inserting this expression into the other homogeneous Maxwell equation (1.32) on
page 13, we obtain

∇ × E(t, x) = −
∂

∂t
[∇ × A(t, x)] = −∇ ×

∂

∂t
A(t, x) (3.7)

or, rearranging the terms,

∇ ×

(
E(t, x) +

∂

∂t
A(t, x)

)
= 0 (3.8)

As before we utilise the vanishing curl of a vector expression to write this
vector expression as the gradient of a scalar function. If, in analogy with the elec-
trostatic case, we introduce the electromagnetic scalar potential function −φ(t, x),
equation (3.8) becomes equivalent to

E(t, x) +
∂

∂t
A(t, x) = −∇φ(t, x) (3.9)

This means that in electrodynamics, E(t, x) is calculated from the potentials ac-
cording to the formula

E(t, x) = −∇φ(t, x) −
∂

∂t
A(t, x) (3.10)

and B(t, x) from formula (3.6) above. Hence, it is a matter of taste whether we
want to express the laws of electrodynamics in terms of the potentials φ(t, x) and
A(t, x), or in terms of the fields E(t, x) and B(t, x). However, there exists an im-
portant difference between the two approaches: in classical electrodynamics the
only directly observable quantities are the fields themselves (and quantities de-
rived from them) and not the potentials. On the other hand, the treatment becomes
significantly simpler if we use the potentials in our calculations and then, at the
final stage, use equation (3.6) and equation (3.10) above to calculate the fields or
physical quantities expressed in the fields.

3.4 Gauge transformations
We saw in section 3.1 on page 39 and in section 3.2 on page 40 that in electrostat-
ics and magnetostatics we have a certain mathematical degree of freedom, up to

Downloaded from http://www.plasma.uu.se/CED/Book Version released 16th January 2007 at 20:40. 41
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terms of vanishing gradients and curls, to pick suitable forms for the potentials and
still get the same physical result. In fact, the way the electromagnetic scalar poten-
tial φ(t, x) and the vector potential A(t, x) are related to the physically observables
gives leeway for similar ‘manipulation’ of them also in electrodynamics.

If we transform φ(t, x) and A(t, x) simultaneously into new ones φ′(t, x) and
A′(t, x) according to the mapping scheme

φ(t, x) 7→ φ′(t, x) = φ(t, x) +
∂Γ(t, x)
∂t

(3.11a)

A(t, x) 7→ A′(t, x) = A(t, x) − ∇Γ(t, x) (3.11b)

where Γ(t, x) is an arbitrary, differentiable scalar function called the gauge func-
tion, and insert the transformed potentials into equation (3.10) on page 41 for the
electric field and into equation (3.6) on page 41 for the magnetic field, we obtain
the transformed fields

E′ = −∇φ′ −
∂A′

∂t
= −∇φ −

∂(∇Γ)
∂t
−
∂A
∂t
+
∂(∇Γ)
∂t

= −∇φ −
∂A
∂t

(3.12a)

B′ = ∇ × A′ = ∇ × A − ∇ × (∇Γ) = ∇ × A (3.12b)

where, once again equation (F.62) on page 177 was used. We see that the fields
are unaffected by the gauge transformation (3.11). A transformation of the poten-
tials φ and A which leaves the fields, and hence Maxwell’s equations, invariant
is called a gauge transformation. A physical law which does not change under a
gauge transformation is said to be gauge invariant. It is only those quantities (ex-
pressions) that are gauge invariant that have experimental significance. Of course,
the EM fields themselves are gauge invariant.

3.5 Gauge conditions
Inserting (3.10) and (3.6) on page 41 into Maxwell’s equations (1.45) on page 15
we obtain, after some simple algebra and the use of equation (1.11) on page 6, the
general inhomogeneous wave equations

∇2φ = −
ρ(t, x)
ε0
−
∂

∂t
(∇ · A) (3.13a)

∇2A −
1
c2

∂2A
∂t2 − ∇(∇ · A) = −µ0j(t, x) +

1
c2∇

∂φ

∂t
(3.13b)
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which can be rewritten in the following, more symmetric, form

1
c2

∂2φ

∂t2 − ∇
2φ =

ρ(t, x)
ε0
+
∂

∂t

(
∇ · A +

1
c2

∂φ

∂t

)
(3.14a)

1
c2

∂2A
∂t2 − ∇

2A = µ0j(t, x) − ∇
(
∇ · A +

1
c2

∂φ

∂t

)
(3.14b)

These two second order, coupled, partial differential equations, representing in all
four scalar equations (one for φ and one each for the three components Ai, i =
1, 2, 3 of A) are completely equivalent to the formulation of electrodynamics in
terms of Maxwell’s equations, which represent eight scalar first-order, coupled,
partial differential equations.

As they stand, equations (3.13) on page 42 and equations (3.14) look compli-
cated and may seem to be of limited use. However, if we write equation (3.6) on
page 41 in the form ∇ × A(t, x) = B(t, x) we can consider this as a specification
of ∇ × A. But we know from Helmholtz’ theorem that in order to determine the
(spatial) behaviour of A completely, we must also specify ∇ · A. Since this diver-
gence does not enter the derivation above, we are free to choose ∇ ·A in whatever
way we like and still obtain the same physical results!

3.5.1 Lorenz-Lorentz gauge
If we choose ∇ · A to fulfil the so called Lorenz-Lorentz gauge condition1

∇ · A +
1
c2

∂φ

∂t
= 0 (3.15)

the coupled inhomogeneous wave equation (3.14) on page 43 simplify into the
following set of uncoupled inhomogeneous wave equations:

�2φ
def
≡

(
1
c2

∂2

∂t2 − ∇
2
)
φ =

1
c2

∂2φ

∂t2 − ∇
2φ =

ρ(t, x)
ε0

(3.16a)

�2A
def
≡

(
1
c2

∂2

∂t2 − ∇
2
)

A =
1
c2

∂2A
∂t2 − ∇

2A = µ0j(t, x) (3.16b)

where �2 is the d’Alembert operator discussed in example M.5 on page 194. Each
of these four scalar equations is an inhomogeneous wave equation of the following
generic form:

�2Ψ(t, x) = f (t, x) (3.17)

1In fact, the Dutch physicist Hendrik Antoon Lorentz, who in 1903 demonstrated the covariance of
Maxwell’s equations, was not the original discoverer of this condition. It had been discovered by the Danish
physicist Ludvig V. Lorenz already in 1867 [6]. In the literature, this fact has sometimes been overlooked
and the condition was earlier referred to as the Lorentz gauge condition.
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where Ψ is a shorthand for either φ or one of the components Ai of the vector po-
tential A, and f is the pertinent generic source component, ρ(t, x)/ε0 or µ0 ji(t, x),
respectively.

We assume that our sources are well-behaved enough in time t so that the
Fourier transform pair for the generic source function f

F −1[ fω(x)]
def
≡ f (t, x) =

∫ ∞
−∞

dω fω(x) e−iωt (3.18a)

F [ f (t, x)]
def
≡ fω(x) =

1
2π

∫ ∞
−∞

dt f (t, x) eiωt (3.18b)

exists, and that the same is true for the generic potential component Ψ:

Ψ(t, x) =
∫ ∞
−∞

dωΨω(x) e−iωt (3.19a)

Ψω(x) =
1

2π

∫ ∞
−∞

dtΨ(t, x) eiωt (3.19b)

Inserting the Fourier representations (3.18a) and (3.19a) into equation (3.17) on
page 43, and using the vacuum dispersion relation for electromagnetic waves

ω = ck (3.20)

the generic 3D inhomogeneous wave equation, equation (3.17) on page 43, turns
into

∇2Ψω(x) + k2Ψω(x) = − fω(x) (3.21)

which is a 3D inhomogeneous time-independent wave equation, often called the
3D inhomogeneous Helmholtz equation.

As postulated by Huygen’s principle, each point on a wave front acts as a
point source for spherical wavelets of varying amplitude. A new wave front is
formed by a linear superposition of the individual wavelets from each of the point
sources on the old wave front. The solution of (3.21) can therefore be expressed
as a weighted superposition of solutions of an equation where the source term has
been replaced by a single point source

∇2G(x, x′) + k2G(x, x′) = −δ(x − x′) (3.22)

and the solution of equation (3.21) above which corresponds to the frequency ω
is given by the superposition

Ψω(x) =
∫

V ′
d3x′ fω(x′)G(x, x′) (3.23)
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where fω(x′) is the wavelet amplitude at the source point x′. The function G(x, x′)
is called the Green function or the propagator.

Due to translational invariance in space, G(x, x′) = G(x − x′). Furthermore, in
equation (3.22) on page 44, the Dirac generalised function δ(x− x′), which repre-
sents the point source, depends only on x − x′ and there is no angular dependence
in the equation. Hence, the solution can only be dependent on r = |x − x′| and not
on the direction of x− x′. If we interpret r as the radial coordinate in a spherically
polar coordinate system, and recall the expression for the Laplace operator in such
a coordinate system, equation (3.22) on page 44 becomes

d2

dr2 (rG) + k2(rG) = −rδ(r) (3.24)

Away from r = |x − x′| = 0, i.e., away from the source point x′, this equation takes
the form

d2

dr2 (rG) + k2(rG) = 0 (3.25)

with the well-known general solution

G = C+
eikr

r
+C−

e−ikr

r
≡ C+

eik|x−x′ |

|x − x′|
+C−

e−ik|x−x′ |

|x − x′|
(3.26)

where C± are constants.
In order to evaluate the constants C±, we insert the general solution, equa-

tion (3.26), into equation (3.22) on page 44 and integrate over a small volume
around r = |x − x′| = 0. Since

G(
∣∣x − x′

∣∣) ∼ C+
1

|x − x′|
+C−

1
|x − x′|

,
∣∣x − x′

∣∣→ 0 (3.27)

The volume integrated equation (3.22) on page 44 can under this assumption be
approximated by(

C+ +C−
) ∫

V ′
d3x′ ∇2

(
1

|x − x′|

)
+ k2 (C+ +C−

) ∫
V ′

d3x′
1

|x − x′|

= −

∫
V ′

d3x′ δ(
∣∣x − x′

∣∣) (3.28)

In virtue of the fact that the volume element d3x′ in spherical polar coordinates
is proportional to |x − x′|2, the second integral vanishes when |x − x′| → 0. Fur-
thermore, from equation (F.73) on page 177, we find that the integrand in the first
integral can be written as −4πδ(|x − x′|) and, hence, that

C+ +C− =
1

4π
(3.29)

Downloaded from http://www.plasma.uu.se/CED/Book Version released 16th January 2007 at 20:40. 45



3. Electromagnetic Potentials

Insertion of the general solution equation (3.26) on page 45 into equation (3.23)
on page 44 gives

Ψω(x) = C+
∫

V ′
d3x′ fω(x′)

eik|x−x′ |

|x − x′|
+C−

∫
V ′

d3x′ fω(x′)
e−ik|x−x′ |

|x − x′|
(3.30)

The inverse Fourier transform of this back to the t domain is obtained by inserting
the above expression for Ψω(x) into equation (3.19a) on page 44:

Ψ(t, x) = C+
∫

V ′
d3x′
∫ ∞
−∞

dω fω(x′)
exp

[
−iω

(
t − k|x−x′ |

ω

)]
|x − x′|

+C−
∫

V ′
d3x′
∫ ∞
−∞

dω fω(x′)
exp

[
−iω

(
t + k|x−x′ |

ω

)]
|x − x′|

(3.31)

If we introduce the retarded time t′ret and the advanced time t′adv in the following
way [using the fact that in vacuum k/ω = 1/c, according to equation (3.20) on
page 44]:

t′ret = t′ret(t,
∣∣x − x′

∣∣) = t −
k |x − x′|

ω
= t −

|x − x′|
c

(3.32a)

t′adv = t′adv(t,
∣∣x − x′

∣∣) = t +
k |x − x′|

ω
= t +

|x − x′|
c

(3.32b)

and use equation (3.18a) on page 44, we obtain

Ψ(t, x) = C+
∫

V ′
d3x′

f (t′ret, x′)
|x − x′|

+C−
∫

V ′
d3x′

f (t′adv, x′)
|x − x′|

(3.33)

This is a solution to the generic inhomogeneous wave equation for the potential
components equation (3.17) on page 43. We note that the solution at time t at the
field point x is dependent on the behaviour at other times t′ of the source at x′
and that both retarded and advanced t′ are mathematically acceptable solutions.
However, if we assume that causality requires that the potential at (t, x) is set up
by the source at an earlier time, i.e., at (t′ret, x′), we must in equation (3.33) above
set C− = 0 and therefore, according to equation (3.29) on page 45, C+ = 1/(4π).2

From the above discussion on the solution of the inhomogeneous wave equa-
tions in the Lorenz-Lorentz gauge we conclude that, under the assumption of
causality, the electrodynamic potentials in vacuum can be written

φ(t, x) =
1

4πε0

∫
V ′

d3x′
ρ(t′ret, x′)
|x − x′|

(3.34a)

A(t, x) =
µ0

4π

∫
V ′

d3x′
j(t′ret, x′)
|x − x′|

(3.34b)

2In fact, inspired by a discussion by Paul A. M. Dirac, John A. Wheeler and Richard P. Feynman
derived in 1945 a fully self-consistent electrodynamics using both the retarded and the advanced potentials
[8]; see also [4].
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Since these retarded potentials were obtained as solutions to the Lorenz-Lorentz
equations (3.16) on page 43 they are valid in the Lorenz-Lorentz gauge but may
be gauge transformed according to the scheme described in subsection 3.4 on
page 41. As they stand, we shall use them frequently in the following.

The potentials φ(t, x) and A(t, x) calculated from (3.13a) on page 42, with an
arbitrary choice of ∇ ·A, can be further gauge transformed according to (3.11) on
page 42. If, in particular, we choose ∇ ·A according to the Lorenz-Lorentz condi-
tion, equation (3.15) on page 43, and apply the gauge transformation (3.11) on the
resulting Lorenz-Lorentz potential equations (3.16) on page 43, these equations
will be transformed into

1
c2

∂2φ

∂t2 − ∇
2φ +

∂

∂t

(
1
c2

∂2Γ

∂t2 − ∇
2Γ

)
=
ρ(t, x)
ε0

(3.35a)

1
c2

∂2A
∂t2 − ∇

2A − ∇
(

1
c2

∂2Γ

∂t2 − ∇
2Γ

)
= µ0j(t, x) (3.35b)

We notice that if we require that the gauge function Γ(t, x) itself be restricted to
fulfil the wave equation

1
c2

∂2Γ

∂t2 − ∇
2Γ = 0 (3.36)

these transformed Lorenz-Lorentz equations will keep their original form. The
set of potentials which have been gauge transformed according to equation (3.11)
on page 42 with a gauge function Γ(t, x) restricted to fulfil equation (3.36), or,
in other words, those gauge transformed potentials for which the Lorenz-Lorentz
equations (3.16) are invariant, comprise the Lorenz-Lorentz gauge.

3.5.2 Coulomb gauge
In Coulomb gauge, often employed in quantum electrodynamics, one chooses
∇ · A = 0 so that equations (3.13) on page 42 or equations (3.14) on page 43
become

∇2φ = −
ρ(t, x)
ε0

(3.37a)

∇2A −
1
c2

∂2A
∂t2 = −µ0j(t, x) +

1
c2∇

∂φ

∂t
(3.37b)

The first of these two is the time-dependent Poisson’s equation which, in analogy
with equation (3.3) on page 39, has the solution

φ(t, x) =
1

4πε0

∫
V ′

d3x′
ρ(t, x′)
|x − x′|

+ α (3.38)
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where α has vanishing gradient. We note that in the scalar potential expression the
charge density source is evaluated at time t. The retardation (and advancement)
effects therefore occur only in the vector potential, which is the solution of the in-
homogeneous wave equation equation (3.37b) on page 47 for the vector potential
A.

In order to solve this equation, one splits up j in a longitudinal (‖) and trans-
verse (⊥) part, j ≡ j‖ + j⊥ where ∇ · j⊥ = 0 and ∇ × j‖ = 0, and note that the
equation of continuity equation (1.23) on page 10 becomes

∂ρ

∂t
+ ∇ · j‖ =

[
∂

∂t

(
−ε0∇

2φ
)
+ ∇ · j‖

]
= ∇ ·

[(
−ε0∇

∂φ

∂t

)
+ j‖
]
= 0

(3.39)

Furthermore, since ∇ × ∇ = 0 and ∇ × j‖ = 0, one finds that

∇ ×

[(
−ε0∇

∂φ

∂t

)
+ j‖
]
= 0 (3.40)

Integrating these two equations, letting f be an arbitrary, well-behaved vector field
and g an arbitrary, well-behaved scalar field, one obtains

1
c2∇

∂φ

∂t
= µ0j‖ + ∇ × f (3.41a)

1
c2∇

∂φ

∂t
= µ0j‖ + ∇g (3.41b)

From the fact that ∇ × f = ∇g, it is clear that

∇ × (∇ × f) = ∇ × ∇g = 0 (3.42a)

∇ · (∇ × f) = ∇ · ∇g = 0 (3.42b)

which, according to Helmholtz’ theorem, means that ∇ × f = ∇g = 0.
The inhomogeneous wave equation equation (3.37b) on page 47 thus becomes

∇2A −
1
c2

∂2A
∂t2 = −µ0j +

1
c2∇

∂φ

∂t
= −µ0j + µ0j‖ = −µ0j⊥ (3.43)

which shows that in Coulomb gauge the source of the vector potential A is the
transverse part of the current j⊥. The longitudinal part of the current j‖ does not
contribute to the vector potential. The retarded solution is (cf. equation (3.34a) on
page 46):

A(t, x) =
µ0

4π

∫
V ′

d3x′
j⊥(t′ret, x′)
|x − x′|

(3.44)

The Coulomb gauge condition is therefore also called the transverse gauge.
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3.5.3 Velocity gauge
If ∇ · A fulfils the velocity gauge condition

∇ · A + α
1
c2

∂φ

∂t
= 0, α =

c2

v2 (3.45)

we obtain the Lorenz-Lorentz gauge condition for α = 1 and the Coulomb gauge
condition for α = 0, respectively. Hence, the velocity gauge is a generalisation
of both these gauges. Inserting equation (3.45) into the coupled inhomogeneous
wave equation (3.14) on page 43 they become

∇2φ −
1
v2

∂2φ

∂t2 = −
ρ(t, x)
ε0

(3.46a)

∇2A −
1
c2

∂2A
∂t2 = −µ0j(t, x) +

1 − α
c2 ∇

∂φ

∂t
(3.46b)

or, in a more symmetric form,

∇2φ −
1
c2

∂2φ

∂t2 = −
ρ(t, x)
ε0
−

1 − α
c2

∂

∂t
∂φ

∂t
(3.47a)

∇2A −
1
c2

∂2A
∂t2 = −µ0j(t, x) +

1 − α
c2 ∇

∂φ

∂t
(3.47b)

Other useful gauges are

• The Poincaré gauge (or radial gauge) where [1]

φ(t, x) = −x ·
∫ 1

0
dλE(t, λx) (3.48a)

A(t, x) =
∫ 1

0
dλB(t, λx) × λx (3.48b)

• The temporal gauge, also known as the Hamilton gauge, defined by φ = 0.

• The axial gauge, defined by A3 = 0.

The process of choosing a particular gauge condition is known as gauge fixing.
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Examples

3.7 Examples

BELECTROMAGNETODYNAMIC POTENTIALS EXAMPLE 3.1

In Dirac’s symmetrised form of electrodynamics (electromagnetodynamics), Maxwell’s
equations are replaced by [see also equations (1.50) on page 16]:

∇ · E =
ρe

ε0
(3.49a)

∇ × E = −µ0jm −
∂B
∂t

(3.49b)

∇ · B = µ0ρ
m (3.49c)

∇ × B = µ0je + ε0µ0
∂E
∂t

(3.49d)

In this theory, one derives the inhomogeneous wave equations for the usual ‘electric’ scalar
and vector potentials (φe,Ae) and their ‘magnetic’ counterparts (φm,Am) by assuming that the
potentials are related to the fields in the following symmetrised form:

E = −∇φe(t, x) −
∂

∂t
Ae(t, x) − ∇ × Am (3.50a)

B = −
1
c2∇φ

m(t, x) −
1
c2

∂

∂t
Am(t, x) + ∇ × Ae (3.50b)

In the absence of magnetic charges, or, equivalently for φm ≡ 0 and Am ≡ 0, these formulae
reduce to the usual Maxwell theory formula (3.10) on page 41 and formula (3.6) on page 41,
respectively, as they should.

Inserting the symmetrised expressions (3.50) above into equations (3.49), one obtains [cf.,
equations (3.13a) on page 42]

∇2φe +
∂

∂t
(∇ · Ae) = −

ρe(t, x)
ε0

(3.51a)

∇2φm +
∂

∂t
(∇ · Am) = −

ρm(t, x)
ε0

(3.51b)

1
c2

∂2Ae

∂t2 − ∇
2Ae + ∇

(
∇ · Ae +

1
c2

∂φe

∂t

)
= µ0je(t, x) (3.51c)

1
c2

∂2Am

∂t2 − ∇
2Am + ∇

(
∇ · Am +

1
c2

∂φm

∂t

)
= µ0jm(t, x) (3.51d)

By choosing the conditions on the divergence of the vector potentials according to the Lorenz-
Lorentz condition [cf. equation (3.15) on page 43]

∇ · Ae +
1
c2

∂

∂t
φe = 0 (3.52)

∇ · Am +
1
c2

∂

∂t
φm = 0 (3.53)

these coupled wave equations simplify to
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1
c2

∂2φe

∂t2 − ∇
2φe =

ρe(t, x)
ε0

(3.54a)

1
c2

∂2Ae

∂t2 − ∇
2Ae = µ0je(t, x) (3.54b)

1
c2

∂2φm

∂t2 − ∇
2φm =

ρm(t, x)
ε0

(3.54c)

1
c2

∂2Am

∂t2 − ∇
2Am = µ0jm(t, x) (3.54d)

exhibiting, once again, the striking properties of Dirac’s symmetrised Maxwell theory.

C END OF EXAMPLE 3.1
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4
Electromagnetic

Fields and
Matter

The microscopic Maxwell equations (1.45) derived in chapter 1 are valid on all
scales where a classical description is good. However, when macroscopic mat-
ter is present, it is sometimes convenient to use the corresponding macroscopic
Maxwell equations (in a statistical sense) in which auxiliary, derived fields are
introduced in order to incorporate effects of macroscopic matter when this is im-
mersed fully or partially in an electromagnetic field.

4.1 Electric polarisation and displacement
In certain cases, for instance in engineering applications, it may be convenient to
separate the influence of an external electric field on free charges on the one hand
and on neutral matter in bulk on the other. This view, which, as we shall see,
has certain limitations, leads to the introduction of (di)electric polarisation and
magnetisation which, in turn, justifies the introduction of two help quantities, the
electric displacement vector D and the magnetising field H.

4.1.1 Electric multipole moments
The electrostatic properties of a spatial volume containing electric charges and
located near a point x0 can be characterized in terms of the total charge or electric
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4. Electromagnetic Fields and Matter

monopole moment

q =
∫

V ′
d3x′ ρ(x′) (4.1)

where the ρ is the charge density introduced in equation (1.7) on page 5, the
electric dipole moment vector

p(x0) =
∫

V ′
d3x′ (x′ − x0) ρ(x′) (4.2)

with components pi, i = 1, 2, 3, the electric quadrupole moment tensor

Q(x0) =
∫

V ′
d3x′ (x′ − x0)(x′ − x0) ρ(x′) (4.3)

with components Qi j, i, j = 1, 2, 3, and higher order electric moments.
In particular, the electrostatic potential equation (3.3) on page 39 from a charge

distribution located near x0 can be Taylor expanded in the following way:

φstat(x) =
1

4πε0

[
q

|x − x0|
+

1
|x − x0|

2 pi
(x − x0)i

|x − x0|

+
1

|x − x0|
3 Qi j

(
3
2

(x − x0)i

|x − x0|

(x − x0) j

|x − x0|
−

1
2
δi j

)
+ . . .

] (4.4)

where Einstein’s summation convention over i and j is implied. As can be seen
from this expression, only the first few terms are important if the field point (ob-
servation point) is far away from x0.

For a normal medium, the major contributions to the electrostatic interactions
come from the net charge and the lowest order electric multipole moments induced
by the polarisation due to an applied electric field. Particularly important is the
dipole moment. Let P denote the electric dipole moment density (electric dipole
moment per unit volume; unit: C/m2), also known as the electric polarisation, in
some medium. In analogy with the second term in the expansion equation (4.4)
above, the electric potential from this volume distribution P(x′) of electric dipole
moments p at the source point x′ can be written

φp(x) =
1

4πε0

∫
V ′

d3x′ P(x′) ·
x − x′

|x − x′|3
= −

1
4πε0

∫
V ′

d3x′ P(x′) · ∇
(

1
|x − x′|

)
=

1
4πε0

∫
V ′

d3x′ P(x′) · ∇′
(

1
|x − x′|

)
(4.5)
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Using the expression equation (M.97) on page 195 and applying the divergence
theorem, we can rewrite this expression for the potential as follows:

φp(x) =
1

4πε0

[∫
V ′

d3x′∇′·
(

P(x′)
|x − x′|

)
−

∫
V ′

d3x′
∇′ · P(x′)
|x − x′|

]
=

1
4πε0

[∮
S ′

d2x′ n̂′ ·
P(x′)
|x − x′|

−

∫
V ′

d3x′
∇′ · P(x′)
|x − x′|

] (4.6)

where the first term, which describes the effects of the induced, non-cancelling
dipole moment on the surface of the volume, can be neglected, unless there is a
discontinuity in n̂ · P at the surface. Doing so, we find that the contribution from
the electric dipole moments to the potential is given by

φp =
1

4πε0

∫
V ′

d3x′
−∇′ · P(x′)
|x − x′|

(4.7)

Comparing this expression with expression equation (3.3) on page 39 for the elec-
trostatic potential from a static charge distribution ρ, we see that −∇ · P(x) has
the characteristics of a charge density and that, to the lowest order, the effective
charge density becomes ρ(x)−∇ ·P(x), in which the second term is a polarisation
term.

The version of equation (1.7) on page 5 where free, ‘true’ charges and bound,
polarisation charges are separated thus becomes

∇ · E =
ρtrue(x) − ∇ · P(x)

ε0
(4.8)

Rewriting this equation, and at the same time introducing the electric displace-
ment vector (C/m2)

D = ε0E + P (4.9)

we obtain

∇ · (ε0E + P) = ∇ · D = ρtrue(x) (4.10)

where ρtrue is the ‘true’ charge density in the medium. This is one of Maxwell’s
equations and is valid also for time varying fields. By introducing the notation
ρpol = −∇ · P for the ‘polarised’ charge density in the medium, and ρtotal = ρtrue +

ρpol for the ‘total’ charge density, we can write down the following alternative
version of Maxwell’s equation (4.22a) on page 58

∇ · E =
ρtotal(x)
ε0

(4.11)
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Often, for low enough field strengths |E|, the linear and isotropic relationship
between P and E

P = ε0χE (4.12)

is a good approximation. The quantity χ is the electric susceptibility which is
material dependent. For electromagnetically anisotropic media such as a magne-
tised plasma or a birefringent crystal, the susceptibility is a tensor. In general, the
relationship is not of a simple linear form as in equation (4.12) above but non-
linear terms are important. In such a situation the principle of superposition is no
longer valid and non-linear effects such as frequency conversion and mixing can
be expected.

Inserting the approximation (4.12) into equation (4.9) on page 55, we can write
the latter

D = εE (4.13)

where, approximately,

ε = ε0(1 + χ) (4.14)

4.2 Magnetisation and the magnetising field
An analysis of the properties of stationary magnetic media and the associated
currents shows that three such types of currents exist:

1. In analogy with ‘true’ charges for the electric case, we may have ‘true’
currents jtrue, i.e., a physical transport of true charges.

2. In analogy with electric polarisation P there may be a form of charge trans-
port associated with the changes of the polarisation with time. Such cur-
rents, induced by an external field, are called polarisation currents and are
identified with ∂P/∂t.

3. There may also be intrinsic currents of a microscopic, often atomic, nature
that are inaccessible to direct observation, but which may produce net ef-
fects at discontinuities and boundaries. These magnetisation currents are
denoted jM.

No magnetic monopoles have been observed yet. So there is no correspon-
dence in the magnetic case to the electric monopole moment (4.1). The lowest
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order magnetic moment, corresponding to the electric dipole moment (4.2), is the
magnetic dipole moment

m =
1
2

∫
V ′

d3x′ (x′ − x0) × j(x′) (4.15)

For a distribution of magnetic dipole moments in a volume, we may describe
this volume in terms of the magnetisation, or magnetic dipole moment per unit
volume, M. Via the definition of the vector potential one can show that the mag-
netisation current and the magnetisation is simply related:

jM = ∇ ×M (4.16)

In a stationary medium we therefore have a total current which is (approxi-
mately) the sum of the three currents enumerated above:

jtotal = jtrue +
∂P
∂t
+ ∇ ×M (4.17)

One might then, erroneously, be led to think that

∇ × B = µ0

(
jtrue +

∂P
∂t
+ ∇ ×M

)
(INCORRECT)

Moving the term ∇×M to the left hand side and introducing the magnetising field
(magnetic field intensity, Ampère-turn density) as

H =
B
µ0
−M (4.18)

and using the definition for D, equation (4.9) on page 55, we can write this incor-
rect equation in the following form

∇ ×H = jtrue +
∂P
∂t
= jtrue +

∂D
∂t
− ε0

∂E
∂t

(4.19)

As we see, in this simplistic view, we would pick up a term which makes the
equation inconsistent; the divergence of the left hand side vanishes while the di-
vergence of the right hand side does not. Maxwell realised this and to overcome
this inconsistency he was forced to add his famous displacement current term
which precisely compensates for the last term in the right hand side. In chapter 1,
we discussed an alternative way, based on the postulate of conservation of electric
charge, to introduce the displacement current.

We may, in analogy with the electric case, introduce a magnetic susceptibility
for the medium. Denoting it χm, we can write

H =
B
µ

(4.20)
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where, approximately,

µ = µ0(1 + χm) (4.21)

Maxwell’s equations expressed in terms of the derived field quantities D and
H are

∇ · D = ρ(t, x) (4.22a)

∇ · B = 0 (4.22b)

∇ × E = −
∂B
∂t

(4.22c)

∇ ×H = j(t, x) +
∂

∂t
D (4.22d)

and are called Maxwell’s macroscopic equations. These equations are convenient
to use in certain simple cases. Together with the boundary conditions and the con-
stitutive relations, they describe uniquely (but only approximately!) the properties
of the electric and magnetic fields in matter.

4.3 Energy and momentum
We shall use Maxwell’s macroscopic equations in the following considerations
on the energy and momentum of the electromagnetic field and its interaction with
matter.

4.3.1 The energy theorem in Maxwell’s theory
Scalar multiplying (4.22c) by H, (4.22d) by E and subtracting, we obtain

H · (∇ × E) − E · (∇ ×H) = ∇ · (E ×H)

= −H ·
∂B
∂t
− E · j − E ·

∂D
∂t
= −

1
2
∂

∂t
(H · B + E · D) − j · E

(4.23)

Integration over the entire volume V and using Gauss’s theorem (the divergence
theorem), we obtain

−
∂

∂t

∫
V ′

d3x′
1
2

(H · B + E · D) =
∫

V ′
d3x′ j · E +

∮
S ′

d2x′ n̂′ · (E ×H) (4.24)

We assume the validity of Ohm’s law so that in the presence of an electromo-
tive force field, we make the linear approximation equation (1.28) on page 12:

j = σ(E + EEMF) (4.25)
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which means that

∫
V ′

d3x′ j · E =
∫

V ′
d3x′

j2

σ
−

∫
V ′

d3x′ j · EEMF (4.26)

Inserting this into equation (4.24) on page 58, one obtains

∫
V ′

d3x′ j · EEMF︸               ︷︷               ︸
Applied electric power

=

∫
V ′

d3x′
j2

σ︸        ︷︷        ︸
Joule heat

+
∂

∂t

∫
V ′

d3x′
1
2

(E · D +H · B)︸                           ︷︷                           ︸
Field energy

(4.27)

+

∮
S ′

d2x′ n̂′ · (E ×H)︸                     ︷︷                     ︸
Radiated power

(4.28)

which is the energy theorem in Maxwell’s theory also known as Poynting’s theo-
rem.

It is convenient to introduce the following quantities:

Ue =
1
2

∫
V ′

d3x′ E · D (4.29)

Um =
1
2

∫
V ′

d3x′H · B (4.30)

S = E ×H (4.31)

where Ue is the electric field energy, Um is the magnetic field energy, both mea-
sured in J, and S is the Poynting vector (power flux), measured in W/m2.

4.3.2 The momentum theorem in Maxwell’s theory
Let us now investigate the momentum balance (force actions) in the case that a
field interacts with matter in a non-relativistic way. For this purpose we consider
the force density given by the Lorentz force per unit volume ρE + j × B. Using
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Maxwell’s equations (4.22) and symmetrising, we obtain

ρE + j × B = (∇ · D)E +
(
∇ ×H −

∂D
∂t

)
× B

= E(∇ · D) + (∇ ×H) × B −
∂D
∂t
× B

= E(∇ · D) − B × (∇ ×H)

−
∂

∂t
(D × B) + D ×

∂B
∂t

= E(∇ · D) − B × (∇ ×H)

−
∂

∂t
(D × B) − D × (∇ × E) +H(∇ · B︸ ︷︷ ︸

=0

)

= [E(∇ · D) − D × (∇ × E)] + [H(∇ · B) − B × (∇ ×H)]

−
∂

∂t
(D × B)

(4.32)

One verifies easily that the ith vector components of the two terms in square
brackets in the right hand member of (4.32) can be expressed as

[E(∇ · D) − D × (∇ × E)]i =
1
2

(
E ·

∂D
∂xi
− D ·

∂E
∂xi

)
+

∂

∂x j

(
EiD j −

1
2

E · D δi j

)
(4.33)

and

[H(∇ · B) − B × (∇ ×H)]i =
1
2

(
H ·

∂B
∂xi
− B ·

∂H
∂xi

)
+

∂

∂x j

(
HiB j −

1
2

B ·H δi j

)
(4.34)

respectively.
Using these two expressions in the ith component of equation (4.32) and re-

shuffling terms, we get

(ρE + j × B)i −
1
2

[(
E ·

∂D
∂xi
− D ·

∂E
∂xi

)
+

(
H ·

∂B
∂xi
− B ·

∂H
∂xi

)]
+
∂

∂t
(D × B)i

=
∂

∂x j

(
EiD j −

1
2

E · D δi j + HiB j −
1
2

H · B δi j

)
(4.35)

60 Version released 16th January 2007 at 20:40. Downloaded from http://www.plasma.uu.se/CED/Book



Energy and momentum

Introducing the electric volume force Fev via its ith component

(Fev)i = (ρE + j × B)i −
1
2

[(
E ·

∂D
∂xi
− D ·

∂E
∂xi

)
+

(
H ·

∂B
∂xi
− B ·

∂H
∂xi

)]
(4.36)

and the Maxwell stress tensor T with components

Ti j = EiD j −
1
2

E · D δi j + HiB j −
1
2

H · B δi j (4.37)

we finally obtain the force equation[
Fev +

∂

∂t
(D × B)

]
i
=
∂Ti j

∂x j
= (∇ · T)i (4.38)

If we introduce the relative electric permittivity κe and the relative magnetic
permeability κm as

D = κeε0E = εE (4.39)

B = κmµ0H = µH (4.40)

we can rewrite (4.38) as

∂Ti j

∂x j
=

(
Fev +

κeκm

c2

∂S
∂t

)
i

(4.41)

where S is the Poynting vector defined in equation (4.29) on page 59. Integration
over the entire volume V yields∫

V ′
d3x′ Fev︸         ︷︷         ︸

Force on the matter

+
d
dt

∫
V ′

d3x′
κeκm

c2 S︸             ︷︷             ︸
Field momentum

=

∮
S ′

d2x′ Tn̂︸        ︷︷        ︸
Maxwell stress

(4.42)

which expresses the balance between the force on the matter, the rate of change
of the electromagnetic field momentum and the Maxwell stress. This equation is
called the momentum theorem in Maxwell’s theory.

In vacuum (4.42) becomes∫
V ′

d3x′ ρ(E + v × B) +
1
c2

d
dt

∫
V ′

d3x′ S =
∮

S ′
d2x′ Tn̂ (4.43)

or

d
dt

pmech +
d
dt

pfield =

∮
S ′

d2x′ Tn̂ (4.44)
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Example

4.5 Example

BTAYLOR EXPANSION OF THE ELECTROSTATIC POTENTIAL EXAMPLE 4.1

The electrostatic potential is

φstat(x) =
1

4πε0

∫
V′

d3x′
ρ(x′)
|x − x′|

(4.45)

For a charge distribution source ρ(x′), well localised in a small volume V ′ around x0, we Taylor
expand the inverse distance 1/ |x − x′| with respect to x0 to obtain

1
|x − x′|

=
1

|(x − x0) − (x′ − x0)|

=
1

|x − x0|
+
∞

∑
n=1

1
n!

3

∑
i1=1
· · ·

3

∑
in=1

∂n 1
|x−x0|

∂xi1 · · · ∂xin
[−(x′i1 − x0i1

)] · · · [−(x′in − x0in
)]

=
1

|x − x0|
+
∞

∑
n=1

∑
n1+n2+n3=n

ni≥0

(−1)n

n1!n2!n3!

∂n 1
|x−x0|

∂xn1
1 ∂xn2

2 ∂xn3
3

(x′1 − x01 )n1 (x′2 − x02 )n2 (x′3 − x03 )n3

(4.46)

Inserting this expansion into the integrand of equation (4.45), we get

φstat(x) =
1

4πε0

[ ∫
V′d

3x′ ρ(x′)
|x − x0|

+
∞

∑
n=1

∑
n1+n2+n3=n

ni≥0

(−1)n

n1!n2!n3!

∂n 1
|x−x0|

∂xn1
1 ∂xn2

2 ∂xn3
3

∫
V′

d3x′ (x′1 − x01 )n1 (x′2 − x02 )n2 (x′3 − x03 )n3ρ(x′)
]

(4.47)

Limiting ourselves to the first three terms

φstat(x) =
1

4πε0

[
q

|x − x0|
−

3

∑
i=1

pi

∂ 1
|x−x0|

∂xi
+

3

∑
i=1

3

∑
j=1

1
2

Qi j

∂2 1
|x−x0|

∂xi∂x j
+ . . .

]
(4.48)

and recalling that

∂ 1
|x−x0|

∂xi
= −

xi − x0i

|x − x0|
(4.49)

and

∂2 1
|x−x0|

∂xi∂x j
=

3(xi − x0i )(x j − x0 j ) − |x − x0|
2 δi j

|x − x0|
5 (4.50)

we see that equation (4.4) on page 54 follows.

C END OF EXAMPLE 4.1
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5
Electromagnetic

Fields from
Arbitrary Source

Distributions

While, in principle, the electric and magnetic fields can be calculated from the
Maxwell equations in chapter 1, or even from the wave equations in chapter 2, it is
often physically more lucid to calculate them from the electromagnetic potentials
derived in chapter 3. In this chapter we will derive the electric and magnetic fields
from the potentials.

We recall that in order to find the solution (3.33) for the generic inhomoge-
neous wave equation (3.17) on page 43 we presupposed the existence of a Fourier
transform pair (3.18a) on page 44 for the generic source term

f (t, x) =
∫ ∞
−∞

dω fω(x) e−iωt (5.1a)

fω(x) =
1

2π

∫ ∞
−∞

dt f (t, x) eiωt (5.1b)

That such transform pairs exist is true for most physical variables which are nei-
ther strictly monotonically increasing nor strictly monotonically decreasing with
time. For charge and current densities varying in time we can therefore, without
loss of generality, work with individual Fourier components ρω(x) and jω(x), re-
spectively. Strictly speaking, the existence of a single Fourier component assumes
a monochromatic source (i.e., a source containing only one single frequency com-
ponent), which in turn requires that the electric and magnetic fields exist for in-
finitely long times. However, by taking the proper limits, we may still use this
approach even for sources and fields of finite duration.
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This is the method we shall utilise in this chapter in order to derive the electric
and magnetic fields in vacuum from arbitrary given charge densities ρ(t, x) and
current densities j(t, x), defined by the temporal Fourier transform pairs

ρ(t, x) =
∫ ∞
−∞

dωρω(x) e−iωt (5.2a)

ρω(x) =
1

2π

∫ ∞
−∞

dt ρ(t, x) eiωt (5.2b)

and

j(t, x) =
∫ ∞
−∞

dω jω(x) e−iωt (5.3a)

jω(x) =
1

2π

∫ ∞
−∞

dt j(t, x) eiωt (5.3b)

under the assumption that only retarded potentials produce physically acceptable
solutions.

The temporal Fourier transform pair for the retarded scalar potential can then
be written

φ(t, x) =
∫ ∞
−∞

dωφω(x) e−iωt (5.4a)

φω(x) =
1

2π

∫ ∞
−∞

dt φ(t, x) eiωt =
1

4πε0

∫
V ′

d3x′ ρω(x′)
eik|x−x′ |

|x − x′|
(5.4b)

where in the last step, we made use of the explicit expression for the temporal
Fourier transform of the generic potential component Ψω(x), equation (3.30) on
page 46. Similarly, the following Fourier transform pair for the vector potential
must exist:

A(t, x) =
∫ ∞
−∞

dωAω(x) e−iωt (5.5a)

Aω(x) =
1

2π

∫ ∞
−∞

dt A(t, x) eiωt =
µ0

4π

∫
V ′

d3x′ jω(x′)
eik|x−x′ |

|x − x′|
(5.5b)

Similar transform pairs exist for the fields themselves.
In the limit that the sources can be considered monochromatic containing only

one single frequency ω0, we have the much simpler expressions

ρ(t, x) = ρ0(x)e−iω0t (5.6a)

j(t, x) = j0(x)e−iω0t (5.6b)

φ(t, x) = φ0(x)e−iω0t (5.6c)

A(t, x) = A0(x)e−iω0t (5.6d)
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The magnetic field

where again the real-valuedness of all these quantities is implied. As discussed
above, we can safely assume that all formulae derived for a general temporal
Fourier representation of the source (general distribution of frequencies in the
source) are valid for these simple limiting cases. We note that in this context,
we can make the formal identification ρω = ρ0δ(ω − ω0), jω = j0δ(ω − ω0) etc.,
and that we therefore, without any loss of stringency, let ρ0 mean the same as the
Fourier amplitude ρω and so on.

5.1 The magnetic field

Let us now compute the magnetic field from the vector potential, defined by equa-
tion (5.5a) and equation (5.5b) on page 66, and formula (3.6) on page 41:

B(t, x) = ∇ × A(t, x) (5.7)

The calculations are much simplified if we work in ω space and, at the final
stage, inverse Fourier transform back to ordinary t space. We are working in
the Lorenz-Lorentz gauge and note that in ω space the Lorenz-Lorentz condition,
equation (3.15) on page 43, takes the form

∇ · Aω − i
k
c
φω = 0 (5.8)

which provides a relation between (the Fourier transforms of) the vector and scalar
potentials.

Using the Fourier transformed version of equation (5.7) and equation (5.5b)
on page 66, we obtain

Bω(x) = ∇ × Aω(x) =
µ0

4π
∇ ×

∫
V ′

d3x′ jω(x′)
eik|x−x′ |

|x − x′|
(5.9)
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Utilising formula (F.57) on page 177 and recalling that jω(x′) does not depend on
x, we can rewrite this as

Bω(x) = −
µ0

4π

∫
V ′

d3x′ jω(x′) ×
[
∇

(
eik|x−x′ |

|x − x′|

)]
= −

µ0

4π

[ ∫
V ′

d3x′ jω(x′) ×
(
−

x − x′

|x − x′|3

)
eik|x−x′ |

+

∫
V ′

d3x′ jω(x′) ×
(

ik
x − x′

|x − x′|
eik|x−x′ |

)
1

|x − x′|

]
=
µ0

4π

[ ∫
V ′

d3x′
jω(x′)eik|x−x′ | × (x − x′)

|x − x′|3

+

∫
V ′

d3x′
(−ik)jω(x′)eik|x−x′ | × (x − x′)

|x − x′|2

]
(5.10)

From this expression for the magnetic field in the frequency (ω) domain, we
obtain the total magnetic field in the temporal (t) domain by taking the inverse
Fourier transform (using the identity −ik = −iω/c):

B(t, x) =
∫ ∞
−∞

dωBω(x) e−iωt

=
µ0

4π

{ ∫
V ′

d3x′
[∫∞
−∞dω jω(x′)e−i(ωt−k|x−x′ |)

]
× (x − x′)

|x − x′|3

+
1
c

∫
V ′

d3x′
[∫∞
−∞dω (−iω)jω(x′)e−i(ωt−k|x−x′ |)

]
× (x − x′)

|x − x′|2

}
=
µ0

4π

∫
V ′

d3x′
j(t′ret, x′) × (x − x′)

|x − x′|3︸                                    ︷︷                                    ︸
Induction field

+
µ0

4πc

∫
V ′

d3x′
j̇(t′ret, x′) × (x − x′)

|x − x′|2︸                                     ︷︷                                     ︸
Radiation field

(5.11)

where

j̇(t′ret, x
′)

def
≡

(
∂j
∂t

)
t=t′ret

(5.12)

and t′ret is given in equation (3.32) on page 46. The first term, the induction field,
dominates near the current source but falls off rapidly with distance from it, is the
electrodynamic version of the Biot-Savart law in electrostatics, formula (1.15) on
page 8. The second term, the radiation field or the far field, dominates at large
distances and represents energy that is transported out to infinity. Note how the
spatial derivatives (∇) gave rise to a time derivative (˙)!
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5.2 The electric field
In order to calculate the electric field, we use the temporally Fourier transformed
version of formula (3.10) on page 41, inserting equations (5.4b) and (5.5b) as the
explicit expressions for the Fourier transforms of φ and A:

Eω(x) = −∇φω(x) + iωAω(x)

= −
1

4πε0
∇

∫
V ′

d3x′ ρω(x′)
eik|x−x′ |

|x − x′|
+

iµ0ω

4π

∫
V ′

d3x′ jω(x′)
eik|x−x′ |

|x − x′|

=
1

4πε0

[ ∫
V ′

d3x′
ρω(x′)eik|x−x′ |(x − x′)

|x − x′|3

− ik
∫

V ′
d3x′

(
ρω(x′)(x − x′)
|x − x′|

−
jω(x′)

c

)
eik|x−x′ |

|x − x′|

]
(5.13)

Using the Fourier transform of the continuity equation (1.23) on page 10

∇
′ · jω(x′) − iωρω(x′) = 0 (5.14)

we see that we can express ρω in terms of jω as follows

ρω(x′) = −
i
ω
∇
′ · jω(x′) (5.15)

Doing so in the last term of equation (5.13) above, and also using the fact that
k = ω/c, we can rewrite this equation as

Eω(x) =
1

4πε0

[ ∫
V ′

d3x′
ρω(x′)eik|x−x′ |(x − x′)

|x − x′|3

−
1
c

∫
V ′

d3x′
(

[∇′ · jω(x′)](x − x′)
|x − x′|

− ikjω(x′)
)

eik|x−x′ |

|x − x′|︸                                                              ︷︷                                                              ︸
Iω

]
(5.16)

The last vector-valued integral can be further rewritten in the following way:

Iω =
∫

V ′
d3x′

(
[∇′ · jω(x′)](x − x′)

|x − x′|
− ikjω(x′)

)
eik|x−x′ |

|x − x′|

=

∫
V ′

d3x′
(
∂ jωm

∂x′m

xl − x′l
|x − x′|

− ik jωl(x′)
)

x̂l
eik|x−x′ |

|x − x′|

(5.17)

But, since
∂

∂x′m

(
jωm

xl − x′l
|x − x′|2

eik|x−x′ |
)
=

(
∂ jωm

∂x′m

)
xl − x′l
|x − x′|2

eik|x−x′ |

+ jωm
∂

∂x′m

(
xl − x′l
|x − x′|2

eik|x−x′ |
) (5.18)
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we can rewrite Iω as

Iω = −
∫

V ′
d3x′

[
jωm

∂

∂x′m

(
xl − x′l
|x − x′|2

x̂l eik|x−x′ |
)
+ ikjω

eik|x−x′ |

|x − x′|

]
+

∫
V ′

d3x′
∂

∂x′m

(
jωm

xl − x′l
|x − x′|2

x̂l eik|x−x′ |
) (5.19)

where, according to Gauss’s theorem, the last term vanishes if jω is assumed to be
limited and tends to zero at large distances. Further evaluation of the derivative in
the first term makes it possible to write

Iω = −
∫

V ′
d3x′

(
−jω

eik|x−x′ |

|x − x′|2
+

2
|x − x′|4

[
jω · (x − x′)

]
(x − x′)eik|x−x′ |

)
− ik

∫
V ′

d3x′
(
−

[
jω · (x − x′)

]
(x − x′)

|x − x′|3
eik|x−x′ | + jω

eik|x−x′ |

|x − x′|

)
(5.20)

Using the triple product ‘bac-cab’ formula (F.51) on page 176 backwards, and
inserting the resulting expression for Iω into equation (5.16) on page 69, we arrive
at the following final expression for the Fourier transform of the total E field:

Eω(x) = −
1

4πε0
∇

∫
V ′

d3x′ ρω(x′)
eik|x−x′ |

|x − x′|
+

iµ0ω

4π

∫
V ′

d3x′ jω(x′)
eik|x−x′ |

|x − x′|

=
1

4πε0

[ ∫
V ′

d3x′
ρω(x′)eik|x−x′ |(x − x′)

|x − x′|3

+
1
c

∫
V ′

d3x′
[jω(x′)eik|x−x′ | · (x − x′)](x − x′)

|x − x′|4

+
1
c

∫
V ′

d3x′
[jω(x′)eik|x−x′ | × (x − x′)] × (x − x′)

|x − x′|4

−
ik
c

∫
V ′

d3x′
[jω(x′)eik|x−x′ | × (x − x′)] × (x − x′)

|x − x′|3

]
(5.21)

Taking the inverse Fourier transform of equation (5.21), once again using the
vacuum relation ω = kc, we find, at last, the expression in time domain for the
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total electric field:

E(t, x) =
∫ ∞
−∞

dωEω(x) e−iωt

=
1

4πε0

∫
V ′

d3x′
ρ(t′ret, x′)(x − x′)
|x − x′|3︸                                   ︷︷                                   ︸

Retarded Coulomb field

+
1

4πε0c

∫
V ′

d3x′
[j(t′ret, x′) · (x − x′)](x − x′)

|x − x′|4︸                                                    ︷︷                                                    ︸
Intermediate field

+
1

4πε0c

∫
V ′

d3x′
[j(t′ret, x′) × (x − x′)] × (x − x′)

|x − x′|4︸                                                         ︷︷                                                         ︸
Intermediate field

+
1

4πε0c2

∫
V ′

d3x′
[j̇(t′ret, x′) × (x − x′)] × (x − x′)

|x − x′|3︸                                                          ︷︷                                                          ︸
Radiation field

(5.22)

Here, the first term represents the retarded Coulomb field and the last term repre-
sents the radiation field which carries energy over very large distances. The other
two terms represent an intermediate field which contributes only in the near zone
and must be taken into account there.

With this we have achieved our goal of finding closed-form analytic expres-
sions for the electric and magnetic fields when the sources of the fields are com-
pletely arbitrary, prescribed distributions of charges and currents. The only as-
sumption made is that the advanced potentials have been discarded; recall the
discussion following equation (3.33) on page 46 in chapter 3.

5.3 The radiation fields
In this section we study electromagnetic radiation, i.e., those parts of the electric
and magnetic fields, calculated above, which are capable of carrying energy and
momentum over large distances. We shall therefore make the assumption that the
observer is located in the far zone, i.e., very far away from the source region(s).
The fields which are dominating in this zone are by definition the radiation fields.

From equation (5.11) on page 68 and equation (5.22) above, which give the
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total electric and magnetic fields, we obtain

Brad(t, x) =
∫ ∞
−∞

dωBrad
ω(x) e−iωt =

µ0

4πc

∫
V ′

d3x′
j̇(t′ret, x′) × (x − x′)

|x − x′|2

(5.23a)

Erad(t, x) =
∫ ∞
−∞

dωErad
ω(x) e−iωt

=
1

4πε0c2

∫
V ′

d3x′
[j̇(t′ret, x′) × (x − x′)] × (x − x′)

|x − x′|3

(5.23b)

where

j̇(t′ret, x
′)

def
≡

(
∂j
∂t

)
t=t′ret

(5.24)

Instead of studying the fields in the time domain, we can often make a spec-
trum analysis into the frequency domain and study each Fourier component sepa-
rately. A superposition of all these components and a transformation back to the
time domain will then yield the complete solution.

The Fourier representation of the radiation fields equation (5.23a) and equa-
tion (5.23b) above were included in equation (5.10) on page 68 and equation (5.21)
on page 70, respectively and are explicitly given by

Brad
ω (x) =

1
2π

∫ ∞
−∞

dt Brad(t, x) eiωt

= −i
kµ0

4π

∫
V ′

d3x′
jω(x′) × (x − x′)
|x − x′|2

eik|x−x′ |

= −i
µ0

4π

∫
V ′

d3x′
jω(x′) × k
|x − x′|

eik|x−x′ |

(5.25a)

Erad
ω (x) =

1
2π

∫ ∞
−∞

dt Erad(t, x) eiωt

= −i
k

4πε0c

∫
V ′

d3x′
[jω(x′) × (x − x′)] × (x − x′)

|x − x′|3
eik|x−x′ |

= −i
1

4πε0c

∫
V ′

d3x′
[jω(x′) × k] × (x − x′)

|x − x′|2
eik|x−x′ |

(5.25b)

where we used the fact that k = k k̂ = k(x − x′)/ |x − x′|.
If the source is located near a point x0 inside a volume V ′ and has such a

limited spatial extent that max |x′ − x0| � |x − x′|, and the integration surface S ,
centred on x0, has a large enough radius |x − x0| � max |x′ − x0|, we see from
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V ′

O

x0

x

x − x0

dS = d2x n̂

x′

x − x′

S (x0)

k

x′ − x0

FIGURE 5.1: Relation between the surface normal and the k vector for radiation
generated at source points x′ near the point x0 in the source volume V ′. At dis-
tances much larger than the extent of V ′, the unit vector n̂, normal to the surface
S which has its centre at x0, and the unit vector k̂ of the radiation k vector from

x′ are nearly coincident.

figure 5.1 that we can approximate

k
∣∣x − x′

∣∣ ≡ k · (x − x′) ≡ k · (x − x0) − k · (x′ − x0)

≈ k |x − x0| − k · (x′ − x0)
(5.26)

Recalling from Formula (F.45) and formula (F.46) on page 176 that

dS = |x − x0|
2 dΩ = |x − x0|

2 sin θ dθ dϕ

and noting from figure 5.1 that k̂ and n̂ are nearly parallel, we see that we can
approximate

k̂ · dS
|x − x0|

2 ≡
d2x

|x − x0|
2 k̂ · n̂ ≈ dΩ (5.27)

Both these approximations will be used in the following.
Within approximation (5.26) the expressions (5.25a) and (5.25b) for the radi-
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ation fields can be approximated as

Brad
ω (x) ≈ −i

µ0

4π
eik|x−x0 |

∫
V ′

d3x′
jω(x′) × k
|x − x′|

e−ik·(x′−x0)

≈ −i
µ0

4π
eik|x−x0 |

|x − x0|

∫
V ′

d3x′ [jω(x′) × k] e−ik·(x′−x0)
(5.28a)

Erad
ω (x) ≈ −i

1
4πε0c

eik|x−x0 |

∫
V ′

d3x′
[jω(x′) × k] × (x − x′)

|x − x′|2
e−ik·(x′−x0)

≈ i
1

4πε0c
eik|x−x0 |

|x − x0|

(x − x0)
|x − x0|

×

∫
V ′

d3x′ [jω(x′) × k] e−ik·(x′−x0)

(5.28b)

I.e., if max |x′ − x0| � |x − x′|, then the fields can be approximated as spherical
waves multiplied by dimensional and angular factors, with integrals over points in
the source volume only.

5.4 Radiated energy
Let us consider the energy that is carried in the radiation fields Brad, equation (5.25a),
and Erad, equation (5.25b) on page 72. We have to treat signals with limited life-
time and hence finite frequency bandwidth differently from monochromatic sig-
nals.

5.4.1 Monochromatic signals
If the source is strictly monochromatic, we can obtain the temporal average of the
radiated power P directly, simply by averaging over one period so that

〈S〉 = 〈E ×H〉 =
1

2µ0
Re {E × B∗} =

1
2µ0

Re
{

Eωe−iωt
× (Bωe−iωt)∗

}
=

1
2µ0

Re
{

Eω × B∗ω e−iωteiωt} = 1
2µ0

Re
{

Eω × B∗ω
} (5.29)

Using the far-field approximations (5.28a) and (5.28b) and the fact that 1/c =
√
ε0µ0 and R0 =

√
µ0/ε0 according to the definition (2.26) on page 29, we obtain

〈S〉 =
1

32π2 R0
1

|x − x0|
2

∣∣∣∣∫
V ′

d3x′ (jω × k)e−ik·(x′−x0)
∣∣∣∣2 x − x0

|x − x0|
(5.30)
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or, making use of (5.27) on page 73,

dP
dΩ
=

1
32π2 R0

∣∣∣∣∫
V ′

d3x′ (jω × k)e−ik·(x′−x0)
∣∣∣∣2 (5.31)

which is the radiated power per unit solid angle.

5.4.2 Finite bandwidth signals
A signal with finite pulse width in time (t) domain has a certain spread in fre-
quency (ω) domain. To calculate the total radiated energy we need to integrate
over the whole bandwidth. The total energy transmitted through a unit area is the
time integral of the Poynting vector:∫ ∞

−∞

dt S(t) =
∫ ∞
−∞

dt (E ×H)

=

∫ ∞
−∞

dω
∫ ∞
−∞

dω′
∫ ∞
−∞

dt (Eω ×Hω′) e−i(ω+ω′)t
(5.32)

If we carry out the temporal integration first and use the fact that∫ ∞
−∞

dt e−i(ω+ω′)t = 2πδ(ω + ω′) (5.33)

equation (5.32) can be written [cf. Parseval’s identity]∫ ∞
−∞

dt S(t) = 2π
∫ ∞
−∞

dω (Eω ×H−ω)

= 2π
(∫ ∞

0
dω (Eω ×H−ω) +

∫ 0

−∞

dω (Eω ×H−ω)
)

= 2π
(∫ ∞

0
dω (Eω ×H−ω) −

∫ −∞
0

dω (Eω ×H−ω)
)

= 2π
(∫ ∞

0
dω (Eω ×H−ω) +

∫ ∞
0

dω (E−ω ×Hω)
)

=
2π
µ0

∫ ∞
0

dω (Eω × B−ω + E−ω × Bω)

=
2π
µ0

∫ ∞
0

dω (Eω × B∗ω + E∗ω × Bω)

(5.34)

where the last step follows from physical requirement of real-valuedness of Eω

and Bω. We insert the Fourier transforms of the field components which dominate
at large distances, i.e., the radiation fields (5.25a) and (5.25b). The result, after

Downloaded from http://www.plasma.uu.se/CED/Book Version released 16th January 2007 at 20:40. 75



5. Electromagnetic Fields from Arbitrary Source Distributions

integration over the area S of a large sphere which encloses the source volume V ′,
is

U =
1

4π

√
µ0

ε0

∮
S

d2x n̂ ·
∫ ∞

0
dω
∣∣∣∣∫

V ′
d3x′

jω × k
|x − x′|

eik|x−x′ |
∣∣∣∣2 k̂ (5.35)

Inserting the approximations (5.26) and (5.27) into equation (5.35) above and
also introducing

U =
∫ ∞

0
dωUω (5.36)

and recalling the definition (2.26) on page 29 for the vacuum resistance R0 we
obtain

dUω

dΩ
dω ≈

1
4π

R0

∣∣∣∣∫
V ′

d3x′ (jω × k)e−ik·(x′−x0)
∣∣∣∣2 dω (5.37)

which, at large distances, is a good approximation to the energy that is radiated
per unit solid angle dΩ in a frequency band dω. It is important to notice that
Formula (5.37) includes only source coordinates. This means that the amount of
energy that is being radiated is independent on the distance to the source (as long
as it is large).
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6
Electromagnetic

Radiation and
Radiating

Systems

In chapter 3 we were able to derive general expressions for the scalar and vector
potentials from which we then, in chapter 5, calculated the total electric and mag-
netic fields from arbitrary distributions of charge and current sources. The only
limitation in the calculation of the fields was that the advanced potentials were
discarded.

Thus, one can, at least in principle, calculate the radiated fields, Poynting flux
and energy for an arbitrary current density Fourier component and then add these
Fourier components together to construct the complete electromagnetic field at
any time at any point in space. However, in practice, it is often difficult to evaluate
the source integrals unless the current has a simple distribution in space. In the
general case, one has to resort to approximations. We shall consider both these
situations.

6.1 Radiation from extended sources
Certain radiation systems have a geometry which is one-dimensional, symmetric
or in any other way simple enough that a direct calculation of the radiated fields
and energy is possible. This is for instance the case when the current flows in one
direction in space only and is limited in extent. An example of this is a linear
antenna.
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j(t′, x′)− L
2

sin[k(L/2 −
∣∣x′3∣∣)]

L
2

FIGURE 6.1: A linear antenna used for transmission. The current in the feeder
and the antenna wire is set up by the EMF of the generator (the transmitter).
At the ends of the wire, the current is reflected back with a 180◦ phase shift to

produce a antenna current in the form of a standing wave.

6.1.1 Radiation from a one-dimensional current distribution
Let us apply equation (5.31) on page 75 to calculate the power from a linear,
transmitting antenna, fed across a small gap at its centre with a monochromatic
source. The antenna is a straight, thin conductor of length L which carries a one-
dimensional time-varying current so that it produces electromagnetic radiation.

We assume that the conductor resistance and the energy loss due to the electro-
magnetic radiation are negligible. The charges in this thin wire are set in motion
due to the EMF of the generator (transmitter) to produce an antenna current which
is the source of the EM radiation. Since we can assume that the antenna wire is
infinitely thin, the current must vanish at the end points −L/2 and L/2. Further-
more, for a monochromatic signal, the current is sinusoidal and is reflected at the
ends of the antenna wire and undergoes there a phase shift of π radians.

Choosing the coordinate system such that the x3 axis is along the antenna axis,
the antenna current can be represented as j = I(t′, x′3)δ(x′1)δ(x′2)x̂3 where I(x′3) is
the current along the antenna wire and fulfils a Helmholtz equation in space with
the boundary conditions of being zero at the endpoints and equal to the supplied
current at the midpoint where the antenna is fed across a very small gap in the
antenna wire. The result of this is that the antenna current forms a standing wave
as indicated in figure 6.1. Linear antennas of this type are called dipole antennas.

For a Fourier component ω0 the standing wave current density can be written
as j(t′, x′) = j0(x′) exp{−iω0t′} [cf. equations (5.6) on page 66] where

j0(x′) = I0δ(x′1)δ(x′2)
sin[k(L/2 −

∣∣x′3∣∣)]
sin(kL/2)

x̂3 (6.1)
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x3 = z

x2

x

jω(x′)

ϕ

k̂

x1

θ

r̂

θ̂

ϕ̂

L
2

− L
2

FIGURE 6.2: We choose a spherical polar coordinate system (r = |x| , θ, ϕ) and
orient it so that the linear electric dipole antenna axis (and thus the antenna cur-

rent density jω) is along the polar axis with the feed point at the origin.

where the current amplitude I0 is a constant (measured in A) and 1/ sin(kL/2) is
a normalisation factor. When the antenna is short we can approximate the cur-
rent distribution by I0(1 − 2|x′3|/L). A half-wave antenna (L = λ/2 ⇔ kL = π)
has the current distribution I0 cos(kx′3) while for a travelling-wave antenna it is
I0 exp(ikx′3).

In order to evaluate formula (5.31) on page 75with the explicit monochromatic
current (6.1) inserted, we use a spherical polar coordinate system as in figure 6.2
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to evaluate the source integral

∣∣∣∣∫
V ′

d3x′ j0 × k e−ik·(x′−x0)
∣∣∣∣2

=

∣∣∣∣∣
∫ L/2

−L/2
dx′3I0

sin[k(L/2 −
∣∣x′3∣∣)]

sin(kL/2)
k sin θe−ikx′3 cos θeikx0 cos θ

∣∣∣∣∣
2

= I2
0

k2 sin2 θ

sin2(kL/2)

∣∣eikx0 cos θ
∣∣2 ∣∣∣∣2 ∫ L/2

0
dx′3 sin[k(L/2 − x′3)] cos(kx′3 cos θ)

∣∣∣∣2
= 4I2

0

(
cos[(kL/2) cos θ] − cos(kL/2)

sin θ sin(kL/2)

)2

(6.2)

Inserting this expression and dΩ = 2π sin θ dθ into formula (5.31) on page 75 and
integrating over θ, we find that the total radiated power from the antenna is

P(L) = R0I2
0

1
4π

∫ π

0
dθ
(

cos[(kL/2) cos θ] − cos(kL/2)
sin θ sin(kL/2)

)2

sin θ (6.3)

One can show that

lim
kL→0

P(L) =
π

12

(
L
λ

)2

R0I2
0 (6.4)

where λ is the vacuum wavelength.
The quantity

Rrad(L) =
P(L)
I2
eff
=

P(L)
1
2 I2

0
= R0

π

6

(
L
λ

)2

≈ 197
(

L
λ

)2

Ω (6.5)

is called the radiation resistance. For the technologically important case of a
half-wave antenna, i.e., for L = λ/2 or kL = π, formula (6.3) above reduces to

P(λ/2) = R0I2
0

1
4π

∫ π

0
dθ

cos2
(
π
2 cos θ

)
sin θ

(6.6)

The integral in (6.6) can always be evaluated numerically. But, it can in fact
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also be evaluated analytically as follows:

∫ π

0

cos2
(
π
2 cos θ

)
sin θ

dθ = [cos θ → u] =
∫ 1

−1

cos2
(
π
2 u
)

1 − u2 du =[
cos2

(π
2

u
)
=

1 + cos(πu)
2

]
=

1
2

∫ 1

−1

1 + cos(πu)
(1 + u)(1 − u)

du

=
1
4

∫ 1

−1

1 + cos(πu)
(1 + u)

du +
1
4

∫ 1

−1

1 + cos(πu)
(1 − u)

du

=
1
2

∫ 1

−1

1 + cos(πu)
(1 + u)

du =
[
1 + u→

v

π

]
=

1
2

∫ 2π

0

1 − cos v
v

dv =
1
2

[γ + ln 2π − Ci(2π)]

≈ 1.22

(6.7)

where in the last step the Euler-Mascheroni constant γ = 0.5772 . . . and the cosine
integral Ci(x) were introduced. Inserting this into the expression equation (6.6)
on page 80 we obtain the value Rrad(λ/2) ≈ 73 Ω.

6.1.2 Radiation from a two-dimensional current distribution
As an example of a two-dimensional current distribution we consider a circular
loop antenna and calculate the radiated fields from such an antenna. We choose
the Cartesian coordinate system x1x2x3 with its origin at the centre of the loop as
in figure 6.3 on page 82

According to equation (5.28a) on page 74 the Fourier component of the radia-
tion part of the magnetic field generated by an extended, monochromatic current
source is

Brad
ω =

−iµ0eik|x|

4π |x|

∫
V ′

d3x′ e−ik·x′ jω × k (6.8)

In our case the generator produces a single frequency ω and we feed the antenna
across a small gap where the loop crosses the positive x1 axis. The circumference
of the loop is chosen to be exactly one wavelength λ = 2πc/ω. This means that
the antenna current oscillates in the form of a sinusoidal standing current wave
around the circular loop with a Fourier amplitude

jω = I0 cosϕ′δ(ρ′ − a)δ(z′)ϕ̂′ (6.9)
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x2

k̂

ϕ

ϕ̂′

jω(x′)

x1

x′

ρ̂′

ϕ′

θ

θ̂

ϕ̂
x

r̂

x3 = z = z′

ẑ′

FIGURE 6.3: For the loop antenna the spherical coordinate system (r, θ, ϕ) de-
scribes the field point x (the radiation field) and the cylindrical coordinate system

(ρ′, ϕ′, z′) describes the source point x′ (the antenna current).

For the spherical coordinate system of the field point, we recall from subsec-
tion F.4.1 on page 176 that the following relations between the base vectors hold:

r̂ = sin θ cosϕx̂1 + sin θ sinϕx̂2 + cos θx̂3

θ̂ = cos θ cosϕx̂1 + cos θ sinϕx̂2 − sin θx̂3

ϕ̂ = − sinϕx̂1 + cosϕx̂2

and

x̂1 = sin θ cosϕr̂ + cos θ cosϕθ̂ − sinϕϕ̂

x̂2 = sin θ sinϕr̂ + cos θ sinϕθ̂ + cosϕϕ̂

x̂3 = cos θ r̂ − sin θθ̂

With the use of the above transformations and trigonometric identities, we obtain
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for the cylindrical coordinate system which describes the source:

ρ̂′ = cosϕ′ x̂1 + sinϕ′ x̂2

= sin θ cos(ϕ′ − ϕ)r̂ + cos θ cos(ϕ′ − ϕ)θ̂ + sin(ϕ′ − ϕ)ϕ̂
(6.10)

ϕ̂′ = − sinϕ′ x̂1 + cosϕ′ x̂2

= − sin θ sin(ϕ′ − ϕ)r̂ − cos θ sin(ϕ′ − ϕ)θ̂ + cos(ϕ′ − ϕ)ϕ̂
(6.11)

ẑ′ = x̂3 = cos θ r̂ − sin θθ̂ (6.12)

This choice of coordinate systems means that k = k r̂ and x′ = aρ̂′ so that

k · x′ = ka sin θ cos(ϕ′ − ϕ) (6.13)

and

ϕ̂′ × k = k[cos(ϕ′ − ϕ)θ̂ + cos θ sin(ϕ′ − ϕ)ϕ̂] (6.14)

With these expressions inserted, recalling that in cylindrical coordinates d3x′ =
ρ′dρ′dϕ′dz′, the source integral becomes∫

V ′
d3x′ e−ik·x′ jω × k = a

∫ 2π

0
dϕ′ e−ika sin θ cos(ϕ′−ϕ)I0 cosϕ′ ϕ̂′ × k

= I0ak
∫ 2π

0
e−ika sin θ cos(ϕ′−ϕ) cos(ϕ′ − ϕ) cosϕ′ dϕ′ θ̂

+ I0ak cos θ
∫ 2π

0
e−ika sin θ cos(ϕ′−ϕ) sin(ϕ′ − ϕ) cosϕ′ dϕ′ ϕ̂

(6.15)

Utilising the periodicity of the integrands over the integration interval [0, 2π],
introducing the auxiliary integration variable ϕ′′ = ϕ′ − ϕ, and utilising standard
trigonometric identities, the first integral in the RHS of (6.15) can be rewritten∫ 2π

0
e−ika sin θ cosϕ′′ cosϕ′′ cos(ϕ′′ + ϕ) dϕ′′

= cosϕ
∫ 2π

0
e−ika sin θ cosϕ′′ cos2 ϕ′′ dϕ′′ + a vanishing integral

= cosϕ
∫ 2π

0
e−ika sin θ cosϕ′′

(
1
2
+

1
2

cos 2ϕ′′
)

dϕ′′

=
1
2

cosϕ
∫ 2π

0
e−ika sin θ cosϕ′′ dϕ′′

+
1
2

cosϕ
∫ 2π

0
e−ika sin θ cosϕ′′ cos(2ϕ′′) dϕ′′

(6.16)
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Analogously, the second integral in the RHS of (6.15) can be rewritten∫ 2π

0
e−ika sin θ cosϕ′′ sinϕ′′ cos(ϕ′′ + ϕ) dϕ′′

=
1
2

sinϕ
∫ 2π

0
e−ika sin θ cosϕ′′ dϕ′′

−
1
2

sinϕ
∫ 2π

0
e−ika sin θ cosϕ′′ cos 2ϕ′′ dϕ′′

(6.17)

As is well-known from the theory of Bessel functions,

Jn(−ξ) = (−1)nJn(ξ)

Jn(−ξ) =
i−n

π

∫ π

0
e−iξ cosϕ cos nϕ dϕ =

i−n

2π

∫ 2π

0
e−iξ cosϕ cos nϕ dϕ

(6.18)

which means that∫ 2π

0
e−ika sin θ cosϕ′′ dϕ′′ = 2πJ0(ka sin θ)∫ 2π

0
e−ika sin θ cosϕ′′ cos 2ϕ′′ dϕ′′ = −2πJ2(ka sin θ)

(6.19)

Putting everything together, we find that∫
V ′

d3x′ e−ik·x′ jω × k = Iθ θ̂ + Iϕ ϕ̂

= I0akπ cosϕ [J0(ka sin θ) − J2(ka sin θ)] θ̂

+ I0akπ cos θ sinϕ [J0(ka sin θ) + J2(ka sin θ)] ϕ̂

(6.20)

so that, in spherical coordinates where |x| = r,

Brad
ω (x) =

−iµ0eikr

4πr

(
Iθ θ̂ + Iϕ ϕ̂

)
(6.21)

To obtain the desired physical magnetic field in the radiation (far) zone we
must Fourier transform back to t space and take the real part and evaluate it at the
retarded time:

Brad(t, x) = Re
{
−iµ0e(ikr−ωt′)

4πr

(
Iθ θ̂ + Iϕ ϕ̂

)}
=

µ0

4πr
sin(kr − ωt′)

(
Iθ θ̂ + Iϕ ϕ̂

)
=

I0akµ0

4r
sin(kr − ωt′)

(
cosϕ [J0(ka sin θ) − J2(ka sin θ)] θ̂

+ cos θ sinϕ [J0(ka sin θ) + J2(ka sin θ)] ϕ̂
)

(6.22)
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From this expression for the radiated B field, we can obtain the radiated E field
with the help of Maxwell’s equations.

6.2 Multipole radiation
In the general case, and when we are interested in evaluating the radiation far from
the source volume, we can introduce an approximation which leads to a multipole
expansion where individual terms can be evaluated analytically. We shall use
Hertz’ method to obtain this expansion.

6.2.1 The Hertz potential
Let us consider the equation of continuity, which, according to expression (1.23)
on page 10, can be written

∂ρ(t, x)
∂t

+ ∇ · j(t, x) = 0 (6.23)

In section 4.1.1 we introduced the electric polarisation P(t, x) such that
−∇ · P = ρpol, the polarisation charge density. If we introduce a vector field π(t, x)
such that

∇ · π = −ρtrue (6.24a)
∂π

∂t
= jtrue (6.24b)

and compare with equation (6.23) above, we see that π(t, x) satisfies this equation
of continuity. Furthermore, if we compare with the electric polarisation [cf. equa-
tion (4.9) on page 55], we see that the quantity π is related to the ‘true’ charges
in the same way as P is related to polarised charge, namely as a dipole moment
density. The quantity π is referred to as the polarisation vector since, formally, it
treats also the ‘true’ (free) charges as polarisation charges so that

∇ · E =
ρtrue + ρpol

ε0
=
−∇ · π − ∇ · P

ε0
(6.25)

We introduce a further potential Πe with the following property

∇ ·Πe = −φ (6.26a)
1
c2

∂Πe

∂t
= A (6.26b)
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where φ and A are the electromagnetic scalar and vector potentials, respectively.
As we see, Πe acts as a ‘super-potential’ in the sense that it is a potential from
which we can obtain other potentials. It is called the Hertz’ vector or polarisation
potential. Requiring that the scalar and vector potentials φ and A, respectively,
fulfil their inhomogeneous wave equations, one finds, using (6.24) and (6.26),
that Hertz’ vector must satisfy the inhomogeneous wave equation

�2Πe =
1
c2

∂2

∂t2Π
e − ∇2Πe =

π

ε0
(6.27)

This equation is of the same type as equation (3.17) on page 43, and has there-
fore the retarded solution

Πe(t, x) =
1

4πε0

∫
V ′

d3x′
π(t′ret, x′)
|x − x′|

(6.28)

with Fourier components

Πe
ω(x) =

1
4πε0

∫
V ′

d3x′
πω(x′)eik|x−x′ |

|x − x′|
(6.29)

If we introduce the help vector C such that

C = ∇ ×Πe (6.30)

we see that we can calculate the magnetic and electric fields, respectively, as fol-
lows

B =
1
c2

∂C
∂t

(6.31a)

E = ∇ × C (6.31b)

Clearly, the last equation is valid only outside the source volume, where∇ · E = 0.
Since we are mainly interested in the fields in the far zone, a long distance from
the source region, this is no essential limitation.

Assume that the source region is a limited volume around some central point
x0 far away from the field (observation) point x illustrated in figure 6.4 on page 87.
Under these assumptions, we can expand the Hertz’ vector, expression (6.29)
above, due to the presence of non-vanishing π(t′ret, x′) in the vicinity of x0, in a
formal series. For this purpose we recall from potential theory that

eik|x−x′ |

|x − x′|
≡

eik|(x−x0)−(x′−x0)|

|(x − x0) − (x′ − x0)|

= ik
∞

∑
n=0

(2n + 1)Pn(cosΘ) jn(k
∣∣x′ − x0

∣∣)h(1)
n (k |x − x0|)

(6.32)
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x − x′

x x0

V ′

O

Θ
x′x − x0 x′ − x0

FIGURE 6.4: Geometry of a typical multipole radiation problem where the field
point x is located some distance away from the finite source volume V ′ centred
around x0. If k |x′ − x0| � 1 � k |x − x0|, then the radiation at x is well approxi-

mated by a few terms in the multipole expansion.

where (see figure 6.4)

eik|x−x′ |

|x − x′|
is a Green function

Θ is the angle between x′ − x0 and x − x0

Pn(cosΘ) is the Legendre polynomial of order n

jn(k
∣∣x′ − x0

∣∣) is the spherical Bessel function of the first kind of order n

h(1)
n (k |x − x0|) is the spherical Hankel function of the first kind of order n

According to the addition theorem for Legendre polynomials

Pn(cosΘ) =
n

∑
m=−n

(−1)mPm
n (cos θ)P−m

n (cos θ′)eim(ϕ−ϕ′) (6.33)

where Pm
n is an associated Legendre polynomial and, in spherical polar coordi-

nates,

x′ − x0 = (
∣∣x′ − x0

∣∣ , θ′, ϕ′) (6.34a)

x − x0 = (|x − x0| , θ, ϕ) (6.34b)

Inserting equation (6.32) on page 86, together with formula (6.33), into equa-
tion (6.29) on page 86, we can in a formally exact way expand the Fourier com-
ponent of the Hertz’ vector as

Πe
ω =

ik
4πε0

∞

∑
n=0

n

∑
m=−n

(2n + 1)(−1)mh(1)
n (k |x − x0|) Pm

n (cos θ) eimϕ

×

∫
V ′

d3x′ πω(x′) jn(k
∣∣x′ − x0

∣∣) P−m
n (cos θ′) e−imϕ′

(6.35)
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We notice that there is no dependence on x − x0 inside the integral; the integrand
is only dependent on the relative source vector x′ − x0.

We are interested in the case where the field point is many wavelengths away
from the well-localised sources, i.e., when the following inequalities

k
∣∣x′ − x0

∣∣ � 1 � k |x − x0| (6.36)

hold. Then we may to a good approximation replace h(1)
n with the first term in its

asymptotic expansion:

h(1)
n (k |x − x0|) ≈ (−i)n+1 eik|x−x0 |

k |x − x0|
(6.37)

and replace jn with the first term in its power series expansion:

jn(k
∣∣x′ − x0

∣∣) ≈ 2nn!
(2n + 1)!

(
k
∣∣x′ − x0

∣∣)n (6.38)

Inserting these expansions into equation (6.35) on page 87, we obtain the multi-
pole expansion of the Fourier component of the Hertz’ vector

Πe
ω ≈

∞

∑
n=0
Πe
ω

(n) (6.39a)

where

Πe
ω

(n) = (−i)n 1
4πε0

eik|x−x0 |

|x − x0|

2nn!
(2n)!

∫
V ′

d3x′ πω(x′) (k
∣∣x′ − x0

∣∣)n Pn(cosΘ)

(6.39b)

This expression is approximately correct only if certain care is exercised; if many
Πe
ω

(n) terms are needed for an accurate result, the expansions of the spherical Han-
kel and Bessel functions used above may not be consistent and must be replaced
by more accurate expressions. Taking the inverse Fourier transform of Πe

ω will
yield the Hertz’ vector in time domain, which inserted into equation (6.30) on
page 86 will yield C. The resulting expression can then in turn be inserted into
equations (6.31) on page 86 in order to obtain the radiation fields.

For a linear source distribution along the polar axis,Θ = θ in expression (6.39b)
above, and Pn(cos θ) gives the angular distribution of the radiation. In the general
case, however, the angular distribution must be computed with the help of for-
mula (6.33) on page 87. Let us now study the lowest order contributions to the
expansion of Hertz’ vector.
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Erad

x2

ϕ

r̂

x

k̂

Bradx3

p

x1

θ

FIGURE 6.5: If a spherical polar coordinate system (r, θ, ϕ) is chosen such that
the electric dipole moment p (and thus its Fourier transform pω) is located at the

origin and directed along the polar axis, the calculations are simplified.

6.2.2 Electric dipole radiation
Choosing n = 0 in expression (6.39b) on page 88, we obtain

Πe
ω

(0) =
eik|x−x0 |

4πε0 |x − x0|

∫
V ′

d3x′ πω(x′) =
1

4πε0

eik|x−x0 |

|x − x0|
pω (6.40)

Since π represents a dipole moment density for the ‘true’ charges (in the same
vein as P does so for the polarised charges), pω =

∫
V ′d

3x′ πω(x′) is the Fourier
component of the electric dipole moment

p(t, x0) =
∫

V ′
d3x′ π(t′, x′) =

∫
V ′

d3x′ (x′ − x0)ρ(t′, x′) (6.41)

[cf. equation (4.2) on page 54 which describes the static dipole moment]. If a
spherical coordinate system is chosen with its polar axis along pω as in figure 6.5,
the components of Πe

ω
(0) are

Πe
r

def
≡ Πe

ω
(0) · r̂ =

1
4πε0

eik|x−x0 |

|x − x0|
pω cos θ (6.42a)

Πe
θ

def
≡ Πe

ω
(0) · θ̂ = −

1
4πε0

eik|x−x0 |

|x − x0|
pω sin θ (6.42b)

Πe
ϕ

def
≡ Πe

ω
(0) · ϕ̂ = 0 (6.42c)
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Evaluating formula (6.30) on page 86 for the help vector C, with the spheri-
cally polar components (6.42) of Πe

ω
(0) inserted, we obtain

Cω = C(0)
ω,ϕ ϕ̂ =

1
4πε0

(
1

|x − x0|
− ik

)
eik|x−x0 |

|x − x0|
pω sin θ ϕ̂ (6.43)

Applying this to equations (6.31) on page 86, we obtain directly the Fourier com-
ponents of the fields

Bω = −i
ωµ0

4π

(
1

|x − x0|
− ik

)
eik|x−x0 |

|x − x0|
pω sin θ ϕ̂ (6.44a)

Eω =
1

4πε0

[
2
(

1
|x − x0|

2 −
ik

|x − x0|

)
cos θ

x − x0

|x − x0|

+

(
1

|x − x0|
2 −

ik
|x − x0|

− k2
)

sin θ θ̂
]

eik|x−x0 |

|x − x0|
pω

(6.44b)

Keeping only those parts of the fields which dominate at large distances (the
radiation fields) and recalling that the wave vector k = k(x − x0)/ |x − x0| where
k = ω/c, we can now write down the Fourier components of the radiation parts of
the magnetic and electric fields from the dipole:

Brad
ω = −

ωµ0

4π
eik|x−x0 |

|x − x0|
pωk sin θ ϕ̂ = −

ωµ0

4π
eik|x−x0 |

|x − x0|
(pω × k) (6.45a)

Erad
ω = −

1
4πε0

eik|x−x0 |

|x − x0|
pωk2 sin θ θ̂ = −

1
4πε0

eik|x−x0 |

|x − x0|
[(pω × k) × k] (6.45b)

These fields constitute the electric dipole radiation, also known as E1 radiation.

6.2.3 Magnetic dipole radiation
The next term in the expression (6.39b) on page 88 for the expansion of the Fourier
transform of the Hertz’ vector is for n = 1:

Πe
ω

(1) = −i
eik|x−x0 |

4πε0 |x − x0|

∫
V ′

d3x′ k
∣∣x′ − x0

∣∣πω(x′) cosΘ

= −ik
1

4πε0

eik|x−x0 |

|x − x0|
2

∫
V ′

d3x′ [(x − x0) · (x′ − x0)]πω(x′)
(6.46)

Here, the term [(x − x0) · (x′ − x0)]πω(x′) can be rewritten

[(x − x0) · (x′ − x0)]πω(x′) = (xi − x0,i)(x′i − x0,i)πω(x′) (6.47)
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and introducing

ηi = xi − x0,i (6.48a)

η′i = x′i − x0,i (6.48b)

the jth component of the integrand in Πe
ω

(1) can be broken up into

{[(x − x0) · (x′ − x0)]πω(x′)} j =
1
2
ηi
(
πω, jη

′
i + πω,iη

′
j

)
+

1
2
ηi
(
πω, jη

′
i − πω,iη

′
j

) (6.49)

i.e., as the sum of two parts, the first being symmetric and the second antisymmet-
ric in the indices i, j. We note that the antisymmetric part can be written as

1
2
ηi
(
πω, jη

′
i − πω,iη

′
j

)
=

1
2

[πω, j(ηiη
′
i) − η

′
j(ηiπω,i)]

=
1
2

[πω(η · η′) − η′(η · πω)] j

=
1
2
{

(x − x0) × [πω × (x′ − x0)]
}

j

(6.50)

The utilisation of equations (6.24) on page 85, and the fact that we are consid-
ering a single Fourier component,

π(t, x) = πωe−iωt (6.51)

allow us to express πω in jω as

πω = i
jω
ω

(6.52)

Hence, we can write the antisymmetric part of the integral in formula (6.46) on
page 90 as

1
2

(x − x0) ×
∫

V ′
d3x′ πω(x′) × (x′ − x0)

= i
1

2ω
(x − x0) ×

∫
V ′

d3x′ jω(x′) × (x′ − x0)

= −i
1
ω

(x − x0) ×mω

(6.53)

where we introduced the Fourier transform of the magnetic dipole moment

mω =
1
2

∫
V ′

d3x′ (x′ − x0) × jω(x′) (6.54)
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The final result is that the antisymmetric, magnetic dipole, part ofΠe
ω

(1) can be
written

Πe,antisym
ω

(1)
= −

k
4πε0ω

eik|x−x0 |

|x − x0|
2 (x − x0) ×mω (6.55)

In analogy with the electric dipole case, we insert this expression into equa-
tion (6.30) on page 86 to evaluate C, with which equations (6.31) on page 86
then gives the B and E fields. Discarding, as before, all terms belonging to the
near fields and transition fields and keeping only the terms that dominate at large
distances, we obtain

Brad
ω (x) = −

µ0

4π
eik|x−x0 |

|x − x0|
(mω × k) × k (6.56a)

Erad
ω (x) =

k
4πε0c

eik|x−x0 |

|x − x0|
mω × k (6.56b)

which are the fields of the magnetic dipole radiation (M1 radiation).

6.2.4 Electric quadrupole radiation
The symmetric part Πe,sym

ω
(1) of the n = 1 contribution in the equation (6.39b) on

page 88 for the expansion of the Hertz’ vector can be expressed in terms of the
electric quadrupole tensor, which is defined in accordance with equation (4.3) on
page 54:

Q(t, x0) =
∫

V ′
d3x′ (x′ − x0)(x′ − x0)ρ(t′ret, x

′) (6.57)

Again we use this expression in equation (6.30) on page 86 to calculate the fields
via equations (6.31) on page 86. Tedious, but fairly straightforward algebra (which
we will not present here), yields the resulting fields. The radiation components of
the fields in the far field zone (wave zone) are given by

Brad
ω (x) =

iµ0ω

8π
eik|x−x0 |

|x − x0|
(k · Qω) × k (6.58a)

Erad
ω (x) =

i
8πε0

eik|x−x0 |

|x − x0|
[(k · Qω) × k] × k (6.58b)

This type of radiation is called electric quadrupole radiation or E2 radiation.
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6.3 Radiation from a localised charge in arbitrary mo-
tion
The derivation of the radiation fields for the case of the source moving relative
to the observer is considerably more complicated than the stationary cases stud-
ied above. In order to handle this non-stationary situation, we use the retarded
potentials (3.34) on page 46 in chapter 3

φ(t, x) =
1

4πε0

∫
V ′

d3x′
ρ(t′ret, x′)
|x − x′|

(6.59a)

A(t, x) =
µ0

4π

∫
V ′

d3x′
j(t′ret, x′)
|x − x′|

(6.59b)

and consider a source region with such a limited spatial extent that the charges
and currents are well localised. Specifically, we consider a charge q′, for instance
an electron, which, classically, can be thought of as a localised, unstructured and
rigid ‘charge distribution’ with a small, finite radius. The part of this ‘charge
distribution’ dq′ which we are considering is located in dV ′ = d3x′ in the sphere in
figure 6.6 on page 94. Since we assume that the electron (or any other other similar
electric charge) moves with a velocity v whose direction is arbitrary and whose
magnitude can even be comparable to the speed of light, we cannot say that the
charge and current to be used in (6.59) is

∫
V ′d

3x′ ρ(t′ret, x′) and
∫

V ′d
3x′ vρ(t′ret, x′),

respectively, because in the finite time interval during which the observed signal
is generated, part of the charge distribution will ‘leak’ out of the volume element
d3x′.

6.3.1 The Liénard-Wiechert potentials
The charge distribution in figure 6.6 on page 94 which contributes to the field at
x(t) is located at x′(t′) on a sphere with radius r = |x − x′| = c(t − t′). The radius
interval of this sphere from which radiation is received at the field point x during
the time interval (t′, t′ + dt′) is (r′, r′ + dr′) and the net amount of charge in this
radial interval is

dq′ = ρ(t′ret, x
′) dS ′ dr′ − ρ(t′ret, x

′)
(x − x′) · v
|x − x′|

dS ′ dt′ (6.60)

where the last term represents the amount of ‘source leakage’ due to the fact that
the charge distribution moves with velocity v(t′) = dx′/dt′. Since dt′ = dr′/c and
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v(t′)

x′(t′)

dS′
dV ′

dr′x(t)

q′

x − x′

c

FIGURE 6.6: Signals which are observed at the field point x at time t were
generated at source points x′(t′) on a sphere, centred on x and expanding, as time
increases, with the velocity c outward from the centre. The source charge element
moves with an arbitrary velocity v and gives rise to a source ‘leakage’ out of the

source volume dV ′ = d3x′.

dS ′ dr′ = d3x′ we can rewrite the expression for the net charge as

dq′ = ρ(t′ret, x
′) d3x′ − ρ(t′ret, x

′)
(x − x′) · v
c |x − x′|

d3x′

= ρ(t′ret, x
′)
(

1 −
(x − x′) · v
c |x − x′|

)
d3x′

(6.61)

or

ρ(t′ret, x
′) d3x′ =

dq′

1 − (x−x′)·v
c|x−x′ |

(6.62)

which leads to the expression

ρ(t′ret, x′)
|x − x′|

d3x′ =
dq′

|x − x′| − (x−x′)·v
c

(6.63)
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This is the expression to be used in the formulae (6.59) on page 93 for the retarded
potentials. The result is (recall that j = ρv)

φ(t, x) =
1

4πε0

∫ dq′

|x − x′| − (x−x′)·v
c

(6.64a)

A(t, x) =
µ0

4π

∫ v dq′

|x − x′| − (x−x′)·v
c

(6.64b)

For a sufficiently small and well localised charge distribution we can, assuming
that the integrands do not change sign in the integration volume, use the mean
value theorem to evaluate these expressions to become

φ(t, x) =
1

4πε0

1
|x − x′| − (x−x′)·v

c

∫
V ′

d3x′ dq′ =
q′

4πε0

1
s

(6.65a)

A(t, x) =
1

4πε0c2

v
|x − x′| − (x−x′)·v

c

∫
V ′

d3x′ dq′ =
q′

4πε0c2

v
s
=

v
c2 φ(t, x)

(6.65b)

where

s = s(t′, x) =
∣∣x − x′(t′)

∣∣ − [x − x′(t′)] · v(t′)
c

(6.66a)

=
∣∣x − x′(t′)

∣∣ (1 −
x − x′(t′)
|x − x′(t′)|

·
v(t′)

c

)
(6.66b)

= [x − x′(t′)] ·
(

x − x′(t′)
|x − x′(t′)|

−
v(t′)

c

)
(6.66c)

is the retarded relative distance. The potentials (6.65) are precisely the Liénard-
Wiechert potentials which will be derived in section 7.3.2 on page 144 by using a
relativistically covariant formalism.

It should be noted that in the complicated derivation presented above, the ob-
server is in a coordinate system which has an ‘absolute’ meaning and the velocity
v is that of the localised charge q′, whereas, as we shall see later, in the covari-
ant derivation, two reference frames of equal standing are moving relative to each
other with v.

The Liénard-Wiechert potentials are applicable to all problems where a spa-
tially localised charge in arbitrary motion emits electromagnetic radiation, and
we shall now study such emission problems. The electric and magnetic fields are
calculated from the potentials in the usual way:

B(t, x) = ∇ × A(t, x) (6.67a)

E(t, x) = −∇φ(t, x) −
∂A(t, x)
∂t

(6.67b)
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|x − x′|
c

v

x(t)

v(t′)x0(t)

x′(t′)

x − x′
x − x0

q′

θ′ θ0

?

FIGURE 6.7: Signals which are observed at the field point x at time t were
generated at the source point x′(t′). After time t′ the particle, which moves with
nonuniform velocity, has followed a yet unknown trajectory. Extrapolating tan-
gentially the trajectory from x′(t′), based on the velocity v(t′), defines the virtual

simultaneous coordinate x0(t).

6.3.2 Radiation from an accelerated point charge
Consider a localised charge q′ and assume that its trajectory is known experimen-
tally as a function of retarded time

x′ = x′(t′) (6.68)

(in the interest of simplifying our notation, we drop the subscript ‘ret’ on t′ from
now on). This means that we know the trajectory of the charge q′, i.e., x′, for all
times up to the time t′ at which a signal was emitted in order to precisely arrive at
the field point x at time t. Because of the finite speed of propagation of the fields,
the trajectory at times later than t′ cannot be known at time t.

The retarded velocity and acceleration at time t′ are given by

v(t′) =
dx′

dt′
(6.69a)

a(t′) = v̇(t′) =
dv
dt′
=

d2x′

dt′2
(6.69b)

As for the charge coordinate x′ itself, we have in general no knowledge of the
velocity and acceleration at times later than t′, and definitely not at the time of
observation t! If we choose the field point x as fixed, application of (6.69) to the
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relative vector x − x′ yields

d
dt′

[x − x′(t′)] = −v(t′) (6.70a)

d2

dt′2
[x − x′(t′)] = −v̇(t′) (6.70b)

The retarded time t′ can, at least in principle, be calculated from the implicit
relation

t′ = t′(t, x) = t −
|x − x′(t′)|

c
(6.71)

and we shall see later how this relation can be taken into account in the calcula-
tions.

According to formulae (6.67) on page 95 the electric and magnetic fields are
determined via differentiation of the retarded potentials at the observation time t
and at the observation point x. In these formulae the unprimed ∇, i.e., the spatial
derivative differentiation operator ∇ = x̂i∂/∂xi means that we differentiate with
respect to the coordinates x = (x1, x2, x3) while keeping t fixed, and the unprimed
time derivative operator ∂/∂t means that we differentiate with respect to t while
keeping x fixed. But the Liénard-Wiechert potentials φ and A, equations (6.65)
on page 95, are expressed in the charge velocity v(t′) given by equation (6.69a)
on page 96 and the retarded relative distance s(t′, x) given by equation (6.66) on
page 95. This means that the expressions for the potentials φ and A contain terms
which are expressed explicitly in t′, which in turn is expressed implicitly in t via
equation (6.71) above. Despite this complication it is possible, as we shall see
below, to determine the electric and magnetic fields and associated quantities at
the time of observation t. To this end, we need to investigate carefully the action
of differentiation on the potentials.

The differential operator method

We introduce the convention that a differential operator embraced by parentheses
with an index x or t means that the operator in question is applied at constant x
and t, respectively. With this convention, we find that(

∂

∂t′

)
x

∣∣x − x′(t′)
∣∣ = x − x′

|x − x′|
·

(
∂

∂t′

)
x

(
x − x′(t′)

)
= −

(x − x′) · v(t′)
|x − x′|

(6.72)

Downloaded from http://www.plasma.uu.se/CED/Book Version released 16th January 2007 at 20:40. 97



6. Electromagnetic Radiation and Radiating Systems

Furthermore, by applying the operator (∂/∂t)x to equation (6.71) on page 97 we
find that(

∂t′

∂t

)
x
= 1 −

(
∂

∂t

)
x

|x − x′(t′(t, x))|
c

= 1 −
[(

∂

∂t′

)
x

|x − x′|
c

](
∂t′

∂t

)
x

= 1 +
(x − x′) · v(t′)

c |x − x′|

(
∂t′

∂t

)
x

(6.73)

This is an algebraic equation in (∂t′/∂t)x which we can solve to obtain(
∂t′

∂t

)
x
=

|x − x′|
|x − x′| − (x − x′) · v(t′)/c

=
|x − x′|

s
(6.74)

where s = s(t′, x) is the retarded relative distance given by equation (6.66) on
page 95. Making use of equation (6.74), we obtain the following useful operator
identity(

∂

∂t

)
x
=

(
∂t′

∂t

)
x

(
∂

∂t′

)
x
=
|x − x′|

s

(
∂

∂t′

)
x

(6.75)

Likewise, by applying (∇)t to equation (6.71) on page 97 we obtain

(∇)t t′ = −(∇)t
|x − x′(t′(t, x))|

c
= −

x − x′

c |x − x′|
· (∇)t(x − x′)

= −
x − x′

c |x − x′|
+

(x − x′) · v(t′)
c |x − x′|

(∇)t t′
(6.76)

This is an algebraic equation in (∇)t t′ with the solution

(∇)tt′ = −
x − x′

cs
(6.77)

which gives the following operator relation when (∇)t is acting on an arbitrary
function of t′ and x:

(∇)t =
[
(∇)tt′

]( ∂

∂t′

)
x
+ (∇)t′ = −

x − x′

cs

(
∂

∂t′

)
x
+ (∇)t′ (6.78)

With the help of the rules (6.78) and (6.75) we are now able to replace t by t′ in
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the operations which we need to perform. We find, for instance, that

∇φ ≡ (∇φ)t = ∇

(
1

4πε0

q′

s

)
= −

q′

4πε0s2

[
x − x′

|x − x′|
−

v(t′)
c
−

x − x′

cs

(
∂s
∂t′

)
x

] (6.79a)

∂A
∂t
≡

(
∂A
∂t

)
x
=
∂

∂t

(
µ0

4π
q′v(t′)

s

)
x

=
q′

4πε0c2s3

[∣∣x − x′
∣∣ sv̇(t′) −

∣∣x − x′
∣∣ v(t′)

(
∂s
∂t′

)
x

] (6.79b)

Utilising these relations in the calculation of the E field from the Liénard-Wiechert
potentials, equations (6.65) on page 95, we obtain

E(t, x) = −∇φ(t, x) −
∂

∂t
A(t, x)

=
q′

4πε0s2(t′, x)

[
[x − x′(t′)] − |x − x′(t′)| v(t′)/c

|x − x′(t′)|

−
[x − x′(t′)] − |x − x′(t′)| v(t′)/c

cs(t′, x)

(
∂s(t′, x)
∂t′

)
x
−
|x − x′(t′)| v̇(t′)

c2

]
(6.80)

Starting from expression (6.66a) on page 95 for the retarded relative distance
s(t′, x), we see that we can evaluate (∂s/∂t′)x in the following way

(
∂s
∂t′

)
x
=

(
∂

∂t′

)
x

(∣∣x − x′
∣∣ − (x − x′) · v(t′)

c

)
=

∂

∂t′
∣∣x − x′(t′)

∣∣ − 1
c

(
∂[x − x′(t′)]

∂t′
· v(t′) + [x − x′(t′)] ·

∂v(t′)
∂t′

)
= −

(x − x′) · v(t′)
|x − x′|

+
v2(t′)

c
−

(x − x′) · v̇(t′)
c

(6.81)

where equation (6.72) on page 97 and equations (6.69) on page 96, respectively,
were used. Hence, the electric field generated by an arbitrarily moving charged
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particle at x′(t′) is given by the expression

E(t, x) =
q′

4πε0s3(t′, x)

(
[x − x′(t′)] −

|x − x′(t′)| v(t′)
c

)(
1 −

v2(t′)
c2

)
︸                                                                            ︷︷                                                                            ︸

Coulomb field when v→ 0

+
q′

4πε0s3(t′, x)

{
x − x′(t′)

c2 ×

[(
[x − x′(t′)] −

|x − x′(t′)| v(t′)
c

)
× v̇(t′)

]}
︸                                                                                             ︷︷                                                                                             ︸

Radiation (acceleration) field
(6.82)

The first part of the field, the velocity field, tends to the ordinary Coulomb field
when v→ 0 and does not contribute to the radiation. The second part of the field,
the acceleration field, is radiated into the far zone and is therefore also called the
radiation field.

From figure 6.7 on page 96 we see that the position the charged particle would
have had if at t′ all external forces would have been switched off so that the trajec-
tory from then on would have been a straight line in the direction of the tangent
at x′(t′) is x0(t), the virtual simultaneous coordinate. During the arbitrary motion,
we interpret x − x0(t) as the coordinate of the field point x relative to the virtual
simultaneous coordinate x0(t). Since the time it takes for a signal to propagate (in
the assumed vacuum) from x′(t′) to x is |x − x′| /c, this relative vector is given by

x − x0(t) = x − x′(t′) −
|x − x′(t′)| v(t′)

c
(6.83)

This allows us to rewrite equation (6.82) above in the following way

E(t, x) =
q′

4πε0s3

[
(x − x0)

(
1 −

v2

c2

)
+ (x − x′) ×

(x − x0) × v̇
c2

]
(6.84)

In a similar manner we can compute the magnetic field:

B(t, x) = ∇ × A(t, x) ≡ (∇)t × A = (∇)t′ × A −
x − x′

cs
×

(
∂

∂t′

)
x

A

= −
q′

4πε0c2s2

x − x′

|x − x′|
× v −

x − x′

c |x − x′|
×

(
∂A
∂t

)
x

(6.85)

where we made use of equation (6.65) on page 95 and formula (6.75) on page 98.
But, according to (6.79a),

x − x′

c |x − x′|
× (∇)tφ =

q′

4πε0c2s2

x − x′

|x − x′|
× v (6.86)
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so that

B(t, x) =
x − x′

c |x − x′|
×

[
−(∇φ)t −

(
∂A
∂t

)
x

]
=

x − x′

c |x − x′|
× E(t, x)

(6.87)

The radiation part of the electric field is obtained from the acceleration field in
formula (6.82) on page 100 as

Erad(t, x) = lim
|x−x′ |→∞

E(t, x)

=
q′

4πε0c2s3 (x − x′) ×
[(

(x − x′) −
|x − x′| v

c

)
× v̇
]

=
q′

4πε0c2s3 [x − x′(t′)] × {[x − x0(t)] × v̇(t′)}

(6.88)

where in the last step we again used formula (6.83) on page 100. Using this
formula and formula (6.87), the radiation part of the magnetic field can be written

Brad(t, x) =
x − x′

c |x − x′|
× Erad(t, x) (6.89)

The direct method
An alternative to the differential operator transformation technique just described
is to try to express all quantities in the potentials directly in t and x. An example
of such a quantity is the retarded relative distance s(t′, x). According to equa-
tion (6.66) on page 95, the square of this retarded relative distance can be written

s2(t′, x) =
∣∣x − x′(t′)

∣∣2 − 2
∣∣x − x′(t′)

∣∣ [x − x′(t′)] · v(t′)
c

(6.90)

+

(
[x − x′(t′)] · v(t′)

c

)2

(6.91)

If we use the following handy identity(
(x − x′) · v

c

)2

+

(
(x − x′) × v

c

)2

=
|x − x′|2 v2

c2 cos2 θ′ +
|x − x′|2 v2

c2 sin2 θ′

=
|x − x′|2 v2

c2 (cos2 θ′ + sin2 θ′) =
|x − x′|2 v2

c2

(6.92)
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we find that(
(x − x′) · v

c

)2

=
|x − x′|2 v2

c2 −

(
(x − x′) × v

c

)2

(6.93)

Furthermore, from equation (6.83) on page 100, we obtain the following identity:

[x − x′(t′)] × v = [x − x0(t)] × v (6.94)

which, when inserted into equation (6.93) above, yields the relation(
(x − x′) · v

c

)2

=
|x − x′|2 v2

c2 −

(
(x − x0) × v

c

)2

(6.95)

Inserting the above into expression (6.90) on page 101 for s2, this expression
becomes

s2 =
∣∣x − x′

∣∣2 − 2
∣∣x − x′

∣∣ (x − x′) · v
c

+
|x − x′|2 v2

c2 −

(
(x − x0) × v

c

)2

=

(
(x − x′) −

|x − x′| v
c

)2

−

(
(x − x0) × v

c

)2

= (x − x0)2 −

(
(x − x0) × v

c

)2

≡ |x − x0(t)|2 −
(

[x − x0(t)] × v(t′)
c

)2

(6.96)

where in the penultimate step we used equation (6.83) on page 100.
What we have just demonstrated is that if the particle velocity at time t can be

calculated or projected from its value at the retarded time t′, the retarded distance
s in the Liénard-Wiechert potentials (6.65) can be expressed in terms of the virtual
simultaneous coordinate x0(t), viz., the point at which the particle will have arrived
at time t, i.e., when we obtain the first knowledge of its existence at the source
point x′ at the retarded time t′, and in the field coordinate x = x(t), where we
make our observations. We have, in other words, shown that all quantities in the
definition of s, and hence s itself, can, when the motion of the charge is somehow
known, be expressed in terms of the time t alone. I.e., in this special case we are
able to express the retarded relative distance as s = s(t, x) and we do not have
to involve the retarded time t′ or any transformed differential operators in our
calculations.

Taking the square root of both sides of equation (6.96), we obtain the following
alternative final expressions for the retarded relative distance s in terms of the
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charge’s virtual simultaneous coordinate x0(t) and velocity v(t′):

s(t′, x) =

√
|x − x0(t)|2 −

(
[x − x0(t)] × v(t′)

c

)2

(6.97a)

= |x − x0(t)|

√
1 −

v2(t′)
c2 sin2 θ0(t) (6.97b)

=

√
|x − x0(t)|2

(
1 −

v2(t′)
c2

)
+

(
[x − x0(t)] · v(t′)

c

)2

(6.97c)

If we know what velocity the particle will have at time t, expression (6.97) above
for s will not be dependent on t′.

Using equation (6.97c) and standard vector analytic formulae, we obtain

∇s2 = ∇

[
|x − x0|

2
(

1 −
v2

c2

)
+

(
(x − x0) · v

c

)2
]

= 2
[

(x − x0)
(

1 −
v2

c2

)
+

vv
c2 · (x − x0)

]
= 2
[
(x − x0) +

v
c
×

(v
c
× (x − x0)

)]
(6.98)

which we shall use in example 6.1 on page 124 for a uniform, unaccelerated mo-
tion of the charge.

Radiation for small velocities
If the charge moves at such low speeds that v/c � 1, formula (6.66) on page 95
simplifies to

s =
∣∣x − x′

∣∣ − (x − x′) · v
c

≈
∣∣x − x′

∣∣ , v � c (6.99)

and formula (6.83) on page 100

x − x0 = (x − x′) −
|x − x′| v

c
≈ x − x′, v � c (6.100)

so that the radiation field equation (6.88) on page 101 can be approximated by

Erad(t, x) =
q′

4πε0c2 |x − x′|3
(x − x′) × [(x − x′) × v̇], v � c (6.101)

from which we obtain, with the use of formula (6.87) on page 101, the magnetic
field

Brad(t, x) =
q′

4πε0c3 |x − x′|2
[v̇ × (x − x′)], v � c (6.102)
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It is interesting to note the close correspondence which exists between the non-
relativistic fields (6.101) and (6.102) and the electric dipole field equations (6.45)
on page 90 if we introduce

p = q′x′(t′) (6.103)

and at the same time make the transitions

q′v̇ = p̈→ −ω2pω (6.104a)

x − x′ = x − x0 (6.104b)

The power flux in the far zone is described by the Poynting vector as a function
of Erad and Brad. We use the close correspondence with the dipole case to find that
it becomes

S =
µ0q′2(v̇)2

16π2c |x − x′|2
sin2 θ

x − x′

|x − x′|
(6.105)

where θ is the angle between v̇ and x − x0. The total radiated power (integrated
over a closed spherical surface) becomes

P =
µ0q′2(v̇)2

6πc
=

q′2v̇2

6πε0c3 (6.106)

which is the Larmor formula for radiated power from an accelerated charge. Note
that here we are treating a charge with v � c but otherwise totally unspeci-
fied motion while we compare with formulae derived for a stationary oscillating
dipole. The electric and magnetic fields, equation (6.101) on page 103 and equa-
tion (6.102) on page 103, respectively, and the expressions for the Poynting flux
and power derived from them, are here instantaneous values, dependent on the in-
stantaneous position of the charge at x′(t′). The angular distribution is that which
is ‘frozen’ to the point from which the energy is radiated.

6.3.3 Bremsstrahlung
An important special case of radiation is when the velocity v and the acceleration
v̇ are collinear (parallel or anti-parallel) so that v × v̇ = 0. This condition (for
an arbitrary magnitude of v) inserted into expression (6.88) on page 101 for the
radiation field, yields

Erad(t, x) =
q′

4πε0c2s3 (x − x′) × [(x − x′) × v̇], v ‖ v̇ (6.107)
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v = 0
v

v = 0.5c

v = 0.25c

FIGURE 6.8: Polar diagram of the energy loss angular distribution factor
sin2 θ/(1− v cos θ/c)5 during bremsstrahlung for particle speeds v = 0, v = 0.25c,

and v = 0.5c.

from which we obtain, with the use of formula (6.87) on page 101, the magnetic
field

Brad(t, x) =
q′ |x − x′|
4πε0c3s3 [v̇ × (x − x′)], v ‖ v̇ (6.108)

The difference between this case and the previous case of v � c is that the approx-
imate expression (6.99) on page 103 for s is no longer valid; we must instead use
the correct expression (6.66) on page 95. The angular distribution of the power
flux (Poynting vector) therefore becomes

S =
µ0q′2v̇2

16π2c |x − x′|2
sin2 θ(

1 − v
c cos θ

)6
x − x′

|x − x′|
(6.109)

It is interesting to note that the magnitudes of the electric and magnetic fields are
the same whether v and v̇ are parallel or anti-parallel.

We must be careful when we compute the energy (S integrated over time). The
Poynting vector is related to the time t when it is measured and to a fixed surface
in space. The radiated power into a solid angle element dΩ, measured relative to
the particle’s retarded position, is given by the formula

dUrad(θ)
dt

dΩ = S · (x − x′)
∣∣x − x′

∣∣ dΩ =
µ0q′2v̇2

16π2c
sin2 θ(

1 − v
c cos θ

)6 dΩ

(6.110)
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x′1x′2
vdt′

∣∣x − x′2
∣∣ + c dt′

dS
dr

x
θ

dΩ
q′

FIGURE 6.9: Location of radiation between two spheres as the charge moves
with velocity v from x′1 to x′2 during the time interval (t′, t′+dt′). The observation

point (field point) is at the fixed location x.

On the other hand, the radiation loss due to radiation from the charge at retarded
time t′ :

dUrad

dt′
dΩ =

dUrad

dt

(
∂t
∂t′

)
x

dΩ (6.111)

Using formula (6.74) on page 98, we obtain

dUrad

dt′
dΩ =

dUrad

dt
s

|x − x′|
dΩ = S · (x − x′)s dΩ (6.112)

Inserting equation (6.109) on page 105 for S into (6.112), we obtain the ex-
plicit expression for the energy loss due to radiation evaluated at the retarded time

dUrad(θ)
dt′

dΩ =
µ0q′2v̇2

16π2c
sin2 θ(

1 − v
c cos θ

)5 dΩ (6.113)

The angular factors of this expression, for three different particle speeds, are plot-
ted in figure 6.8 on page 105.

Comparing expression (6.110) on page 105 with expression (6.113) above, we
see that they differ by a factor 1 − v cos θ/c which comes from the extra factor
s/ |x − x′| introduced in (6.112). Let us explain this in geometrical terms.

During the interval (t′, t′ + dt′) and within the solid angle element dΩ the
particle radiates an energy [dUrad(θ)/dt′] dt′dΩ. As shown in figure 6.9 this energy
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is at time t located between two spheres, one outer with its origin at x′1(t′) and
radius c(t − t′), and one inner with its origin at x′2(t′ + dt′) = x′1(t′) + v dt′ and
radius c[t − (t′ + dt′)] = c(t − t′ − dt′).

From Figure 6.9 we see that the volume element subtending the solid angle
element

dΩ =
dS∣∣x − x′2

∣∣2 (6.114)

is

d3x = dS dr =
∣∣x − x′2

∣∣2 dΩ dr (6.115)

Here, dr denotes the differential distance between the two spheres and can be
evaluated in the following way

dr =
∣∣x − x′2

∣∣ + c dt′ −
∣∣x − x′2

∣∣ − x − x′2∣∣x − x′2
∣∣ · v︸          ︷︷          ︸

v cos θ

dt′

=

(
c −

x − x′2∣∣x − x′2
∣∣ · v

)
dt′ =

cs∣∣x − x′2
∣∣ dt′

(6.116)

where formula (6.66) on page 95 was used in the last step. Hence, the volume
element under consideration is

d3x = dS dr =
s∣∣x − x′2
∣∣ dS cdt′ (6.117)

We see that the energy which is radiated per unit solid angle during the time
interval (t′, t′ + dt′) is located in a volume element whose size is θ dependent.
This explains the difference between expression (6.110) on page 105 and expres-
sion (6.113) on page 106.

Let the radiated energy, integrated over Ω, be denoted Ũrad. After tedious, but
relatively straightforward integration of formula (6.113) on page 106, one obtains

dŨrad

dt′
=
µ0q′2v̇2

6πc
1(

1 − v2

c2

)3 =
2
3

q′2v̇2

4πε0c3

(
1 −

v2

c2

)−3

(6.118)

If we know v(t′), we can integrate this expression over t′ and obtain the total en-
ergy radiated during the acceleration or deceleration of the particle. This way we
obtain a classical picture of bremsstrahlung (braking radiation, free-free radia-
tion). Often, an atomistic treatment is required for obtaining an acceptable result.
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6.3.4 Cyclotron and synchrotron radiation
Formula (6.87) and formula (6.88) on page 101 for the magnetic field and the
radiation part of the electric field are general, valid for any kind of motion of the
localised charge. A very important special case is circular motion, i.e., the case
v ⊥ v̇.

With the charged particle orbiting in the x1x2 plane as in figure 6.10 on page 109,
an orbit radius a, and an angular frequency ω0, we obtain

ϕ(t′) = ω0t′ (6.119a)

x′(t′) = a[x̂1 cosϕ(t′) + x̂2 sinϕ(t′)] (6.119b)

v(t′) = ẋ′(t′) = aω0[−x̂1 sinϕ(t′) + x̂2 cosϕ(t′)] (6.119c)

v = |v| = aω0 (6.119d)

v̇(t′) = ẍ′(t′) = −aω2
0[x̂1 cosϕ(t′) + x̂2 sinϕ(t′)] (6.119e)

v̇ = |v̇| = aω2
0 (6.119f)

Because of the rotational symmetry we can, without loss of generality, rotate our
coordinate system around the x3 axis so the relative vector x − x′ from the source
point to an arbitrary field point always lies in the x2x3 plane, i.e.,

x − x′ =
∣∣x − x′

∣∣ (x̂2 sinα + x̂3 cosα) (6.120)

where α is the angle between x − x′ and the normal to the plane of the particle
orbit (see Figure 6.10). From the above expressions we obtain

(x − x′) · v =
∣∣x − x′

∣∣ v sinα cosϕ (6.121a)

(x − x′) · v̇ = −
∣∣x − x′

∣∣ v̇ sinα sinϕ =
∣∣x − x′

∣∣ v̇ cos θ (6.121b)

where in the last step we simply used the definition of a scalar product and the
fact that the angle between v̇ and x − x′ is θ.

The power flux is given by the Poynting vector, which, with the help of for-
mula (6.87) on page 101, can be written

S =
1
µ0

(E × B) =
1

cµ0
|E|2

x − x′

|x − x′|
(6.122)

Inserting this into equation (6.112) on page 106, we obtain

dUrad(α, ϕ)
dt′

=
|x − x′| s

cµ0
|E|2 (6.123)

where the retarded distance s is given by expression (6.66) on page 95. With the
radiation part of the electric field, expression (6.88) on page 101, inserted, and
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v

x1

x3

x2

ϕ(t′)
0

α

a
v̇

(t, x) x − x′

x

(t′, x′)θ

q′

FIGURE 6.10: Coordinate system for the radiation from a charged particle at
x′(t′) in circular motion with velocity v(t′) along the tangent and constant accel-
eration v̇(t′) toward the origin. The x1 x2 axes are chosen so that the relative field
point vector x−x′ makes an angle α with the x3 axis which is normal to the plane

of the orbital motion. The radius of the orbit is a.

using (6.121a) and (6.121b) on page 108, one finds, after some algebra, that

dUrad(α, ϕ)
dt′

=
µ0q′2v̇2

16π2c

(
1 − v

c sinα cosϕ
)2
−

(
1 − v2

c2

)
sin2 α sin2 ϕ(

1 − v
c sinα cosϕ

)5

(6.124)

The angles θ and ϕ vary in time during the rotation, so that θ refers to a moving
coordinate system. But we can parametrise the solid angle dΩ in the angle ϕ and
the (fixed) angle α so that dΩ = sinα dα dϕ. Integration of equation (6.124) over
this dΩ gives, after some cumbersome algebra, the angular integrated expression

dŨrad

dt′
=
µ0q′2v̇2

6πc
1(

1 − v2

c2

)2 (6.125)

In equation (6.124) above, two limits are particularly interesting:

1. v/c � 1 which corresponds to cyclotron radiation.

2. v/c . 1 which corresponds to synchrotron radiation.
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Cyclotron radiation
For a non-relativistic speed v � c, equation (6.124) on page 109 reduces to

dUrad(α, ϕ)
dt′

=
µ0q′2v̇2

16π2c
(1 − sin2 α sin2 ϕ) (6.126)

But, according to equation (6.121b) on page 108

sin2 α sin2 ϕ = cos2 θ (6.127)

where θ is defined in figure 6.10 on page 109. This means that we can write

dUrad(θ)
dt′

=
µ0q′2v̇2

16π2c
(1 − cos2 θ) =

µ0q′2v̇2

16π2c
sin2 θ (6.128)

Consequently, a fixed observer near the orbit plane (α ≈ π/2) will observe
cyclotron radiation twice per revolution in the form of two equally broad pulses
of radiation with alternating polarisation.

Synchrotron radiation
When the particle is relativistic, v . c, the denominator in equation (6.124) on
page 109 becomes very small if sinα cosϕ ≈ 1, which defines the forward direc-
tion of the particle motion (α ≈ π/2, ϕ ≈ 0). The equation (6.124) on page 109
becomes

dUrad(π/2, 0)
dt′

=
µ0q′2v̇2

16π2c
1(

1 − v
c

)3 (6.129)

which means that an observer near the orbit plane sees a very strong pulse fol-
lowed, half an orbit period later, by a much weaker pulse.

The two cases represented by equation (6.128) above and equation (6.129) are
very important results since they can be used to determine the characteristics of
the particle motion both in particle accelerators and in astrophysical objects where
a direct measurement of particle velocities are impossible.

In the orbit plane (α = π/2), equation (6.124) on page 109 gives

dUrad(π/2, ϕ)
dt′

=
µ0q′2v̇2

16π2c

(
1 − v

c cosϕ
)2
−

(
1 − v2

c2

)
sin2 ϕ(

1 − v
c cosϕ

)5 (6.130)

which vanishes for angles ϕ0 such that

cosϕ0 =
v

c
(6.131a)

sinϕ0 =

√
1 −

v2

c2 (6.131b)
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v

x1

x3

x2

ϕ(t′)
0

a ∆θ

∆θ

v̇

(t, x)
x − x′

(t′, x′)
q′

FIGURE 6.11: When the observation point is in the plane of the particle orbit,
i.e., α = π/2 the lobe width is given by ∆θ.

Hence, the angle ϕ0 is a measure of the synchrotron radiation lobe width ∆θ; see
figure 6.11. For ultra-relativistic particles, defined by

γ =
1√

1 − v2

c2

� 1,

√
1 −

v2

c2 � 1, (6.132)

one can approximate

ϕ0 ≈ sinϕ0 =

√
1 −

v2

c2 =
1
γ

(6.133)

Hence, synchrotron radiation from ultra-relativistic charges is characterized
by a radiation lobe width which is approximately

∆θ ≈
1
γ

(6.134)

This angular interval is swept by the charge during the time interval

∆t′ =
∆θ

ω0
(6.135)

during which the particle moves a length interval

∆l′ = v∆t′ = v
∆θ

ω0
(6.136)
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in the direction toward the observer who therefore measures a compressed pulse
width of length

∆t = ∆t′ −
∆l′

c
= ∆t′ −

v∆t′

c
=
(

1 −
v

c

)
∆t′ =

(
1 −

v

c

) ∆θ
ω0
≈

(
1 −

v

c

) 1
γω0

=

(
1 − v

c

) (
1 + v

c

)
1 +

v

c︸  ︷︷  ︸
≈ 2

1
γω0

≈

(
1 −

v2

c2

)
︸        ︷︷        ︸

1/γ2

1
2γω0

=
1

2γ3

1
ω0

(6.137)

Typically, the spectral width of a pulse of length ∆t is ∆ω . 1/∆t. In the ultra-
relativistic synchrotron case one can therefore expect frequency components up
to

ωmax ≈
1
∆t
= 2γ3ω0 (6.138)

A spectral analysis of the radiation pulse will therefore exhibit a (broadened) line
spectrum of Fourier components nω0 from n = 1 up to n ≈ 2γ3.

When many charged particles, N say, contribute to the radiation, we can have
three different situations depending on the relative phases of the radiation fields
from the individual particles:

1. All N radiating particles are spatially much closer to each other than a typ-
ical wavelength. Then the relative phase differences of the individual elec-
tric and magnetic fields radiated are negligible and the total radiated fields
from all individual particles will add up to become N times that from one
particle. This means that the power radiated from the N particles will be N2

higher than for a single charged particle. This is called coherent radiation.

2. The charged particles are perfectly evenly distributed in the orbit. In this
case the phases of the radiation fields cause a complete cancellation of the
fields themselves. No radiation escapes.

3. The charged particles are somewhat unevenly distributed in the orbit. This
happens for an open ring current, carried initially by evenly distributed
charged particles, which is subject to thermal fluctuations. From statisti-
cal mechanics we know that this happens for all open systems and that the
particle densities exhibit fluctuations of order

√
N. This means that out of

the N particles,
√

N will exhibit deviation from perfect randomness—and
thereby perfect radiation field cancellation—and give rise to net radiation
fields which are proportional to

√
N. As a result, the radiated power will be

proportional to N, and we speak about incoherent radiation. Examples of
this can be found both in earthly laboratories and under cosmic conditions.
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θ0

vt

b

B

v = vx̂1
q′

|x − x0|

E⊥ x̂3

FIGURE 6.12: The perpendicular field of a charge q′ moving with velocity v =
vx̂ is E⊥ ẑ.

Radiation in the general case
We recall that the general expression for the radiation E field from a moving
charge concentration is given by expression (6.88) on page 101. This expression
in equation (6.123) on page 108 yields the general formula

dUrad(θ, ϕ)
dt′

=
µ0q′2 |x − x′|

16π2cs5

{
(x − x′) ×

[(
(x − x′) −

|x − x′| v
c

)
× v̇
]}2

(6.139)

Integration over the solid angle Ω gives the totally radiated power as

dŨrad

dt′
=
µ0q′2v̇2

6πc
1 − v2

c2 sin2 ψ(
1 − v2

c2

)3 (6.140)

where ψ is the angle between v and v̇.
If v is collinear with v̇, then sinψ = 0, we get bremsstrahlung. For v ⊥ v̇,

sinψ = 1, which corresponds to cyclotron radiation or synchrotron radiation.

Virtual photons
Let us consider a charge q′ moving with constant, high velocity v(t′) along the x1

axis. According to formula (6.188) on page 125 and figure 6.12, the perpendicular
component along the x3 axis of the electric field from this moving charge is

E⊥ = E3 =
q′

4πε0s3

(
1 −

v2

c2

)
(x − x0) · x̂3 (6.141)
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Utilising expression (6.97) on page 103 and simple geometrical relations, we can
rewrite this as

E⊥ =
q′

4πε0

b

γ2
[
(vt)2 + b2/γ2

]3/2 (6.142)

This represents a contracted Coulomb field, approaching the field of a plane wave.
The passage of this field ‘pulse’ corresponds to a frequency distribution of the field
energy. Fourier transforming, we obtain

Eω,⊥ =
1

2π

∫ ∞
−∞

dt E⊥(t) eiωt =
q′

4π2ε0bv

[(
bω
vγ

)
K1

(
bω
vγ

)]
(6.143)

Here, K1 is the Kelvin function (Bessel function of the second kind with imaginary
argument) which behaves in such a way for small and large arguments that

Eω,⊥ ∼
q′

4π2ε0bv
, bω � vγ ⇔

b
vγ
ω � 1 (6.144a)

Eω,⊥ ∼ 0, bω � vγ ⇔
b
vγ
ω � 1 (6.144b)

showing that the ‘pulse’ length is of the order b/(vγ).
Due to the equipartitioning of the field energy into the electric and magnetic

fields, the total field energy can be written

Ũ = ε0

∫
V

d3x E2
⊥ = ε0

∫ bmax

bmin

db 2πb
∫ ∞
−∞

dt vE2
⊥ (6.145)

where the volume integration is over the plane perpendicular to v. With the use
of Parseval’s identity for Fourier transforms, formula (5.34) on page 75, we can
rewrite this as

Ũ =
∫ ∞

0
dω Ũω = 4πε0v

∫ bmax

bmin

db 2πb
∫ ∞

0
dω Eω,⊥

≈
q′2

2π2ε0v

∫ ∞
−∞

dω
∫ vγ/ω

bmin

db
b

(6.146)

from which we conclude that

Ũω ≈
q′2

2π2ε0v
ln
(

vγ

bminω

)
(6.147)

where an explicit value of bmin can be calculated in quantum theory only.
As in the case of bremsstrahlung, it is intriguing to quantise the energy into

photons [cf. equation (6.218) on page 129]. Then we find that

Nω dω ≈
2α
π

ln
(

cγ
bminω

)
dω
ω

(6.148)
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�γ

p1

p2

p′1

p′2

FIGURE 6.13: Diagrammatic representation of the semi-classical electron-
electron interaction (Møller scattering).

where α = e2/(4πε0~c) ≈ 1/137 is the fine structure constant.
Let us consider the interaction of two (classical) electrons, 1 and 2. The result

of this interaction is that they change their linear momenta from p1 to p′1 and p2 to
p′2, respectively. Heisenberg’s uncertainty principle gives bmin ∼ ~/

∣∣p1 − p′1
∣∣ so

that the number of photons exchanged in the process is of the order

Nω dω ≈
2α
π

ln
( cγ

~ω
∣∣p1 − p′1

∣∣) dω
ω

(6.149)

Since this change in momentum corresponds to a change in energy ~ω = E1 − E′1
and E1 = m0γc2, we see that

Nω dω ≈
2α
π

ln

(
E1

m0c2

∣∣cp1 − cp′1
∣∣

E1 − E′1

)
dω
ω

(6.150)

a formula which gives a reasonable semi-classical account of a photon-induced
electron-electron interaction process. In quantum theory, including only the low-
est order contributions, this process is known as Møller scattering. A diagram-
matic representation of (a semi-classical approximation of) this process is given
in figure 6.13.

6.3.5 Radiation from charges moving in matter
When electromagnetic radiation is propagating through matter, new phenomena
may appear which are (at least classically) not present in vacuum. As mentioned
earlier, one can under certain simplifying assumptions include, to some extent, the
influence from matter on the electromagnetic fields by introducing new, derived
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field quantities D and H according to

D = ε(t, x)E = κeε0E (6.151)

B = µ(t, x)H = κmµ0H (6.152)

Expressed in terms of these derived field quantities, the Maxwell equations, often
called macroscopic Maxwell equations, take the form

∇ · D = ρ(t, x) (6.153a)

∇ × E = −
∂B
∂t

(6.153b)

∇ · B = 0 (6.153c)

∇ ×H =
∂D
∂t
+ j(t, x) (6.153d)

Assuming for simplicity that the electric permittivity ε and the magnetic per-
meability µ, and hence the relative permittivity κe and the relative permeability κm

all have fixed values, independent on time and space, for each type of material we
consider, we can derive the general telegrapher’s equation [cf. equation (2.34) on
page 31]

∂2E
∂ζ2 − σµ

∂E
∂t
− εµ

∂2E
∂t2 = 0 (6.154)

describing (1D) wave propagation in a material medium.
In chapter 2 we concluded that the existence of a finite conductivity, manifest-

ing itself in a collisional interaction between the charge carriers, causes the waves
to decay exponentially with time and space. Let us therefore assume that in our
medium σ = 0 so that the wave equation simplifies to

∂2E
∂ζ2 − εµ

∂2E
∂t2 = 0 (6.155)

If we introduce the phase velocity in the medium as

vϕ =
1
√
εµ
=

1
√
κeε0κmµ0

=
c
√
κeκm

(6.156)

where, according to equation (1.11) on page 6, c = 1/
√
ε0µ0 is the speed of

light, i.e., the phase speed of electromagnetic waves in vacuum, then the general
solution to each component of equation (6.155) above

Ei = f (ζ − vϕt) + g(ζ + vϕt), i = 1, 2, 3 (6.157)
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The ratio of the phase speed in vacuum and in the medium

c
vϕ
=
√
κeκm = c

√
εµ

def
≡ n (6.158)

is called the refractive index of the medium. In general n is a function of both
time and space as are the quantities ε, µ, κe, and κm themselves. If, in addition,
the medium is anisotropic or birefringent, all these quantities are rank-two tensor
fields. Under our simplifying assumptions, in each medium we consider n =
Const for each frequency component of the fields.

Associated with the phase speed of a medium for a wave of a given frequency
ω we have a wave vector, defined as

k
def
≡ k k̂ = kv̂ϕ =

ω

vϕ

vϕ
vϕ

(6.159)

As in the vacuum case discussed in chapter 2, assuming that E is time-harmonic,
i.e., can be represented by a Fourier component proportional to exp{−iωt}, the
solution of equation (6.155) can be written

E = E0ei(k·x−ωt) (6.160)

where now k is the wave vector in the medium given by equation (6.159). With
these definitions, the vacuum formula for the associated magnetic field, equa-
tion (2.41) on page 31,

B =
√
εµ k̂ × E =

1
vϕ

k̂ × E =
1
ω

k × E (6.161)

is valid also in a material medium (assuming, as mentioned, that n has a fixed
constant scalar value). A consequence of a κe , 1 is that the electric field will, in
general, have a longitudinal component.

It is important to notice that depending on the electric and magnetic properties
of a medium, and, hence, on the value of the refractive index n, the phase speed
in the medium can be smaller or larger than the speed of light:

vϕ =
c
n
=
ω

k
(6.162)

where, in the last step, we used equation (6.159).
If the medium has a refractive index which, as is usually the case, dependent

on frequency ω, we say that the medium is dispersive. Because in this case also
k(ω) and ω(k), so that the group velocity

vg =
∂ω

∂k
(6.163)
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has a unique value for each frequency component, and is different from vϕ. Except
in regions of anomalous dispersion, vg is always smaller than c. In a gas of free
charges, such as a plasma, the refractive index is given by the expression

n2(ω) = 1 −
ω2

p

ω2 (6.164)

where

ω2
p =∑

σ

Nσq2
σ

ε0mσ
(6.165)

is the square of the plasma frequency ωp. Here mσ and Nσ denote the mass and
number density, respectively, of charged particle species σ. In an inhomogeneous
plasma, Nσ = Nσ(x) so that the refractive index and also the phase and group
velocities are space dependent. As can be easily seen, for each given frequency,
the phase and group velocities in a plasma are different from each other. If the
frequency ω is such that it coincides with ωp at some point in the medium, then at
that point vϕ → ∞ while vg → 0 and the wave Fourier component at ω is reflected
there.

Vavilov-Čerenkov radiation
As we saw in subsection 6.1, a charge in uniform, rectilinear motion in vacuum
does not give rise to any radiation; see in particular equation (6.186a) on page 124.
Let us now consider a charge in uniform, rectilinear motion in a medium with elec-
tric properties which are different from those of a (classical) vacuum. Specifically,
consider a medium where

ε = Const > ε0 (6.166a)

µ = µ0 (6.166b)

This implies that in this medium the phase speed is

vϕ =
c
n
=

1
√
εµ0

< c (6.167)

Hence, in this particular medium, the speed of propagation of (the phase planes of)
electromagnetic waves is less than the speed of light in vacuum, which we know
is an absolute limit for the motion of anything, including particles. A medium
of this kind has the interesting property that particles, entering into the medium
at high speeds |v|, which, of course, are below the phase speed in vacuum, can
experience that the particle speeds are higher than the phase speed in the medium.
This is the basis for the Vavilov-Čerenkov radiation, more commonly known as
Cerenkov radiation, that we shall now study.

118 Version released 16th January 2007 at 20:40. Downloaded from http://www.plasma.uu.se/CED/Book



Radiation from a localised charge in arbitrary motion

If we recall the general derivation, in the vacuum case, of the retarded (and ad-
vanced) potentials in chapter 3 and the Liénard-Wiechert potentials, equations (6.65)
on page 95, we realise that we obtain the latter in the medium by a simple for-
mal replacement c → c/n in the expression (6.66) on page 95 for s. Hence, the
Liénard-Wiechert potentials in a medium characterized by a refractive index n,
are

φ(t, x) =
1

4πε0

q′∣∣|x − x′| − n (x−x′)·v
c

∣∣ = 1
4πε0

q′

s
(6.168a)

A(t, x) =
1

4πε0c2

q′v∣∣|x − x′| − n (x−x′)·v
c

∣∣ = 1
4πε0c2

q′v
s

(6.168b)

where now

s =
∣∣∣∣∣∣x − x′

∣∣ − n
(x − x′) · v

c

∣∣∣∣ (6.169)

The need for the absolute value of the expression for s is obvious in the case
when v/c ≥ 1/n because then the second term can be larger than the first term;
if v/c � 1/n we recover the well-known vacuum case but with modified phase
speed. We also note that the retarded and advanced times in the medium are [cf.
equation (3.32) on page 46]

t′ret = t′ret(t,
∣∣x − x′

∣∣) = t −
k |x − x′|

ω
= t −

|x − x′| n
c

(6.170a)

t′adv = t′adv(t,
∣∣x − x′

∣∣) = t +
k |x − x′|

ω
= t +

|x − x′| n
c

(6.170b)

so that the usual time interval t − t′ between the time measured at the point of
observation and the retarded time in a medium becomes

t − t′ =
|x − x′| n

c
(6.171)

For v/c ≥ 1/n, the retarded distance s, and therefore the denominators in
equations (6.168) above, vanish when

n(x − x′) ·
v
c
=
∣∣x − x′

∣∣ nv
c

cos θc =
∣∣x − x′

∣∣ (6.172)

or, equivalently, when

cos θc =
c
nv

(6.173)

In the direction defined by this angle θc, the potentials become singular. During
the time interval t − t′ given by expression (6.171), the field exists within a sphere
of radius |x − x′| around the particle while the particle moves a distance

l′ = (t − t′)v (6.174)
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θc αc vq′

x′(t′)

x(t)

FIGURE 6.14: Instantaneous picture of the expanding field spheres from a point
charge moving with constant speed v/c > 1/n in a medium where n > 1. This

generates a Vavilov-Čerenkov shock wave in the form of a cone.

along the direction of v.
In the direction θc where the potentials are singular, all field spheres are tangent

to a straight cone with its apex at the instantaneous position of the particle and with
the apex half angle αc defined according to

sinαc = cos θc =
c
nv

(6.175)

This cone of potential singularities and field sphere circumferences propagates
with speed c/n in the form of a shock front, called Vavilov-Čerenkov radiation.1

The Vavilov-Čerenkov cone is similar in nature to the Mach cone in acoustics.

1The first systematic exploration of this radiation was made by P. A. Čerenkov in 1934, who was then
a post-graduate student in S. I. Vavilov’s research group at the Lebedev Institute in Moscow. Vavilov wrote
a manuscript with the experimental findings, put Čerenkov as the author, and submitted it to Nature. In
the manuscript, Vavilov explained the results in terms of radioactive particles creating Compton electrons
which gave rise to the radiation (which was the correct interpretation), but the paper was rejected. The
paper was then sent to Physical Review and was, after some controversy with the American editors who
claimed the results to be wrong, eventually published in 1937. In the same year, I. E. Tamm and I. M. Frank
published the theory for the effect (‘the singing electron’). In fact, predictions of a similar effect had been
made as early as 1888 by Heaviside, and by Sommerfeld in his 1904 paper ‘Radiating body moving with
velocity of light’. On May 8, 1937, Sommerfeld sent a letter to Tamm via Austria, saying that he was
surprised that his old 1904 ideas were now becoming interesting. Tamm, Frank and Čerenkov received
the Nobel Prize in 1958 ‘for the discovery and the interpretation of the Čerenkov effect’ [V. L. Ginzburg,
private communication].
The first observation of this type of radiation was reported by Marie Curie in 1910, but she never pursued
the exploration of it [8].
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Radiation from a localised charge in arbitrary motion

In order to make some quantitative estimates of this radiation, we note that we
can describe the motion of each charged particle q′ as a current density:

j = q′v δ(x′ − vt′) = q′v δ(x′ − vt′)δ(y′)δ(z′)x̂1 (6.176)

which has the trivial Fourier transform

jω =
q′

2π
eiωx′/v δ(y′)δ(z′)x̂1 (6.177)

This Fourier component can be used in the formulae derived for a linear current
in subsection 6.1.1 if only we make the replacements

ε0 → ε = n2ε0 (6.178a)

k →
nω
c

(6.178b)

In this manner, using jω from equation (6.177) above, the resulting Fourier trans-
forms of the Vavilov-Čerenkov magnetic and electric radiation fields can be calcu-
lated from the expressions (5.10) on page 68) and (5.21) on page 70, respectively.

The total energy content is then obtained from equation (5.34) on page 75
(integrated over a closed sphere at large distances). For a Fourier component one
obtains [cf. equation (5.37) on page 76]

Urad
ω dΩ ≈

1
4πε0nc

∣∣∣∣∫
V ′

d3x′ (jω × k)e−ik·x′
∣∣∣∣2 dΩ

=
q′2nω2

16π3ε0c3

∣∣∣∣∫ ∞
−∞

exp
[
ix′
(ω
v
− k cos θ

)]
dx′
∣∣∣∣2 sin2 θ dΩ

(6.179)

where θ is the angle between the direction of motion, x̂′1, and the direction to the
observer, k̂. The integral in (6.179) is singular of a ‘Dirac delta type’. If we limit
the spatial extent of the motion of the particle to the closed interval [−X, X] on the
x′ axis we can evaluate the integral to obtain

Urad
ω dΩ =

q′2nω2 sin2 θ

4π3ε0c3

sin2 [(1 − nv
c cos θ

)
Xω
v

][(
1 − nv

c cos θ
)
ω
v

]2 dΩ (6.180)

which has a maximum in the direction θc as expected. The magnitude of this
maximum grows and its width narrows as X → ∞. The integration of (6.180)
over Ω therefore picks up the main contributions from θ ≈ θc. Consequently, we
can set sin2 θ ≈ sin2 θc and the result of the integration is

Ũrad
ω = 2π

∫ π

0
Urad
ω (θ) sin θ dθ = dcos θ = −ξc = 2π

∫ 1

−1
Urad
ω (ξ) dξ

≈
q′2nω2 sin2 θc

2π2ε0c3

∫ 1

−1

sin2 [(1 + nvξ
c

)
Xω
v

][(
1 + nvξ

c

)
ω
v

]2 dξ
(6.181)
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The integrand in (6.181) is strongly peaked near ξ = −c/(nv), or, equivalently,
near cos θc = c/(nv). This means that the integrand function is practically zero
outside the integration interval ξ ∈ [−1, 1]. Consequently, one may extend the
ξ integration interval to (−∞,∞) without introducing too much an error. Via yet
another variable substitution we can therefore approximate

sin2 θc

∫ 1

−1

sin2 [(1 + nvξ
c

)
Xω
v

][(
1 + nvξ

c

)
ω
v

]2 dξ ≈
(

1 −
c2

n2v2

)
cX
ωn

∫ ∞
−∞

sin2 x
x2 dx

=
cXπ
ωn

(
1 −

c2

n2v2

) (6.182)

leading to the final approximate result for the total energy loss in the frequency
interval (ω,ω + dω)

Ũrad
ω dω =

q′2X
2πε0c2

(
1 −

c2

n2v2

)
ω dω (6.183)

As mentioned earlier, the refractive index is usually frequency dependent. Re-
alising this, we find that the radiation energy per frequency unit and per unit length
is

Ũrad
ω dω
2X

=
q′2ω

4πε0c2

(
1 −

c2

n2(ω)v2

)
dω (6.184)

This result was derived under the assumption that v/c > 1/n(ω), i.e., under the
condition that the expression inside the parentheses in the right hand side is pos-
itive. For all media it is true that n(ω) → 1 when ω → ∞, so there exist always
a highest frequency for which we can obtain Vavilov-Čerenkov radiation from a
fast charge in a medium. Our derivation above for a fixed value of n is valid for
each individual Fourier component.
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6.5 Examples

BTHE FIELDS FROM A UNIFORMLY MOVING CHARGEEXAMPLE 6.1

In the special case of uniform motion, the localised charge moves in a field-free, isolated
space and we know that it will not be affected by any external forces. It will therefore move
uniformly in a straight line with the constant velocity v. This gives us the possibility to extrapo-
late its position at the observation time, x′(t), from its position at the retarded time, x′(t′). Since
the particle is not accelerated, v̇ ≡ 0, the virtual simultaneous coordinate x0 will be identical to
the actual simultaneous coordinate of the particle at time t, i.e., x0(t) = x′(t). As depicted in
figure 6.7 on page 96, the angle between x − x0 and v is θ0 while then angle between x − x′ and
v is θ′.

We note that in the case of uniform velocity v, time and space derivatives are closely related
in the following way when they operate on functions of x(t) [cf. equation (1.33) on page 13]:

∂

∂t
→ −v · ∇ (6.185)

Hence, the E and B fields can be obtained from formulae (6.67) on page 95, with the potentials
given by equations (6.65) on page 95 as follows:

E = −∇φ −
∂A
∂t
= −∇φ −

1
c2

∂vφ
∂t
= −∇φ −

v
c2

∂φ

∂t

= −∇φ +
v
c

(v
c
· ∇φ

)
= −

(
1 −

vv
c2 ·

)
∇φ

=
(vv

c2 − 1
)
· ∇φ

(6.186a)

B = ∇ × A = ∇ ×
( v

c2 φ
)
= ∇φ ×

v
c2 = −

v
c2 × ∇φ

=
v
c2 ×

[(v
c
· ∇φ

) v
c
− ∇φ

]
=

v
c2 ×

(vv
c2 − 1

)
· ∇φ

=
v
c2 × E

(6.186b)

Here 1 = x̂i x̂i is the unit dyad and we used the fact that v × v ≡ 0. What remains is just to
express ∇φ in quantities evaluated at t and x.

From equation (6.65a) on page 95 and equation (6.98) on page 103 we find that

∇φ =
q′

4πε0
∇

(
1
s

)
= −

q′

8πε0 s3 ∇s2

= −
q′

4πε0 s3

[
(x − x0) +

v
c
×

(v
c
× (x − x0)

)] (6.187)

When this expression for ∇φ is inserted into equation (6.186a), the following result
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E(t, x) =
(vv

c2 − 1
)
· ∇φ = −

q′

8πε0 s3

(vv
c2 − 1

)
· ∇s2

=
q′

4πε0 s3

{
(x − x0) +

v
c
×

(v
c
× (x − x0)

)
−

v
c

(v
c
· (x − x0)

)
−

vv
c2 ·

[v
c
×

(v
c
× (x − x0)

)]}
=

q′

4πε0 s3

[
(x − x0) +

v
c

(v
c
· (x − x0)

)
− (x − x0)

v2

c2

−
v
c

(v
c
· (x − x0)

)]
=

q′

4πε0 s3 (x − x0)
(

1 −
v2

c2

)

(6.188)

follows. Of course, the same result also follows from equation (6.84) on page 100 with v̇ ≡ 0
inserted.

From equation (6.188) we conclude that E is directed along the vector from the simultane-
ous coordinate x0(t) to the field (observation) coordinate x(t). In a similar way, the magnetic
field can be calculated and one finds that

B(t, x) =
µ0q′

4πs3

(
1 −

v2

c2

)
v × (x − x0) =

1
c2 v × E (6.189)

From these explicit formulae for the E and B fields and formula (6.97b) on page 103 for s, we
can discern the following cases:

1. v→ 0⇒ E goes over into the Coulomb field ECoulomb

2. v→ 0⇒ B goes over into the Biot-Savart field

3. v→ c⇒ E becomes dependent on θ0

4. v→ c, sin θ0 ≈ 0⇒ E→ (1 − v2/c2)ECoulomb

5. v→ c, sin θ0 ≈ 1⇒ E→ (1 − v2/c2)−1/2ECoulomb

C END OF EXAMPLE 6.1

BTHE CONVECTION POTENTIAL AND THE CONVECTION FORCE EXAMPLE 6.2

Let us consider in more detail the treatment of the radiation from a uniformly moving rigid
charge distribution.

If we return to the original definition of the potentials and the inhomogeneous wave equa-
tion, formula (3.17) on page 43, for a generic potential component Ψ(t, x) and a generic source
component f (t, x),

�2Ψ(t, x) =
(

1
c2

∂2

∂t2 − ∇
2

)
Ψ(t, x) = f (t, x) (6.190)

we find that under the assumption that v = vx̂1, this equation can be written
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(
1 −

v2

c2

)
∂2Ψ

∂x2
1
+
∂2Ψ

∂x2
2
+
∂2Ψ

∂x2
3
= − f (x) (6.191)

i.e., in a time-independent form. Transforming

ξ1 =
x1

√
1 − v2/c2

(6.192a)

ξ2 = x2 (6.192b)

ξ3 = x3 (6.192c)

and introducing the vectorial nabla operator in ξ space, ∇ξ ≡def (∂/∂ξ1, ∂/∂ξ2, ∂/∂ξ3), the time-
independent equation (6.191) reduces to an ordinary Poisson equation

∇2
ξΨ(ξ) = − f (

√
1 − v2/c2 ξ1, ξ2, ξ3) ≡ − f (ξ) (6.193)

in this space. This equation has the well-known Coulomb potential solution

Ψ(ξ) =
1

4π

∫
V

f (ξ′)
|ξ − ξ′|

d3ξ′ (6.194)

After inverse transformation back to the original coordinates, this becomes

Ψ(x) =
1

4π

∫
V

f (x′)
s

d3x′ (6.195)

where, in the denominator,

s =
[

(x1 − x′1)2 +

(
1 −

v2

c2

)
[(x2 − x′2)2 + (x3 − x′3)2]

] 1
2

(6.196)

Applying this to the explicit scalar and vector potential components, realising that for a rigid
charge distribution ρ moving with velocity v the current is given by j = ρv, we obtain

φ(t, x) =
1

4πε0

∫
V

ρ(x′)
s

d3x′ (6.197a)

A(t, x) =
1

4πε0c2

∫
V

vρ(x′)
s

d3x′ =
v
c2 φ(t, x) (6.197b)

For a localised charge where
∫
ρ d3x′ = q′, these expressions reduce to

φ(t, x) =
q′

4πε0 s
(6.198a)

A(t, x) =
q′v

4πε0c2 s
(6.198b)

which we recognise as the Liénard-Wiechert potentials; cf. equations (6.65) on page 95. We
notice, however, that the derivation here, based on a mathematical technique which in fact is a
Lorentz transformation, is of more general validity than the one leading to equations (6.65) on
page 95.

Let us now consider the action of the fields produced from a moving, rigid charge distri-
bution represented by q′ moving with velocity v, on a charged particle q, also moving with
velocity v. This force is given by the Lorentz force

F = q(E + v × B) (6.199)
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With the help of equation (6.189) on page 125 and equations (6.197) on page 126, and the
fact that ∂t = −v · ∇ [cf. formula (6.185) on page 124], we can rewrite expression (6.199) on
page 126 as

F = q
[
E + v ×

( v
c2 × E

)]
= q
[(v

c
· ∇φ

) v
c
− ∇φ −

v
c
×

(v
c
× ∇φ

)]
(6.200)

Applying the ‘bac-cab’ rule, formula (F.51) on page 176, on the last term yields

v
c
×

(v
c
× ∇φ

)
=
(v

c
· ∇φ

) v
c
−
v2

c2∇φ (6.201)

which means that we can write

F = −q∇ψ (6.202)

where

ψ =

(
1 −

v2

c2

)
φ (6.203)

The scalar function ψ is called the convection potential or the Heaviside potential. When the
rigid charge distribution is well localised so that we can use the potentials (6.198) the convection
potential becomes

ψ =

(
1 −

v2

c2

)
q′

4πε0 s
(6.204)

The convection potential from a point charge is constant on flattened ellipsoids of revolution,
defined through equation (6.196) on page 126 as(

x1 − x′1
√

1 − v2/c2

)2

+ (x2 − x′2)2 + (x3 − x′3)2

= γ2(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2 = Const

(6.205)

These Heaviside ellipsoids are equipotential surfaces, and since the force is proportional to the
gradient of ψ, which means that it is perpendicular to the ellipsoid surface, the force between
two charges is in general not directed along the line which connects the charges. A consequence
of this is that a system consisting of two co-moving charges connected with a rigid bar, will
experience a torque. This is the idea behind the Trouton-Noble experiment, aimed at measuring
the absolute speed of the earth or the galaxy. The negative outcome of this experiment is
explained by the special theory of relativity which postulates that mechanical laws follow the
same rules as electromagnetic laws, so that a compensating torque appears due to mechanical
stresses within the charge-bar system.

C END OF EXAMPLE 6.2
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BBREMSSTRAHLUNG FOR LOW SPEEDS AND SHORT ACCELERATION TIMESEXAMPLE 6.3

Calculate the bremsstrahlung when a charged particle, moving at a non-relativistic speed,
is accelerated or decelerated during an infinitely short time interval.

We approximate the velocity change at time t′ = t0 by a delta function:

v̇(t′) = ∆v δ(t′ − t0) (6.206)

which means that

∆v(t0) =
∫ ∞
−∞

dt′ v̇ (6.207)

Also, we assume v/c � 1 so that, according to formula (6.66) on page 95,

s ≈ |x − x′| (6.208)

and, according to formula (6.83) on page 100,

x − x0 ≈ x − x′ (6.209)

From the general expression (6.87) on page 101 we conclude that E ⊥ B and that it suffices
to consider E ≡

∣∣Erad
∣∣. According to the ‘bremsstrahlung expression’ for Erad, equation (6.107)

on page 104,

E =
q′ sin θ′

4πε0c2 |x − x′|
∆v δ(t′ − t0) (6.210)

In this simple case B ≡
∣∣Brad

∣∣ is given by

B =
E
c

(6.211)

Fourier transforming expression (6.210) above for E is trivial, yielding

Eω =
q′ sin θ′

8π2ε0c2 |x − x′|
∆v eiωt0 (6.212)

We note that the magnitude of this Fourier component is independent of ω. This is a conse-
quence of the infinitely short ‘impulsive step’ δ(t′ − t0) in the time domain which produces an
infinite spectrum in the frequency domain.

The total radiation energy is given by the expression

Ũ rad =

∫ ∞
−∞

dt′
dŨ rad

dt′
=

∫ ∞
−∞

dt′
∮

S ′
d2x′ n̂′ ·

(
E ×

B
µ0

)
=

1
µ0

∮
S ′

d2x′
∫ ∞
−∞

dt′ EB =
1
µ0c

∮
S ′

d2x′
∫ ∞
−∞

dt′ E2

= ε0c
∮

S ′
d2x′

∫ ∞
−∞

dt′ E2

(6.213)

According to Parseval’s identity [cf. equation (5.34) on page 75] the following equality
holds:
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∫ ∞
−∞

dt′ E2 = 4π
∫ ∞

0
dω |Eω|

2 (6.214)

which means that the radiated energy in the frequency interval (ω,ω + dω) is

Ũ rad
ω dω = 4πε0c

(∮
S ′

d2x′ |Eω|
2
)

dω (6.215)

For our infinite spectrum, equation (6.212) on page 128, we obtain

Ũ rad
ω dω =

q′2(∆v)2

16π3ε0c3

∮
S ′

d2x′
sin2 θ′

|x − x′|2
dω

=
q′2(∆v)2

16π3ε0c3

∫ 2π

0
dϕ′

∫ π

0
dθ′ sin θ′ sin2 θ′ dω

=
q′2

3πε0c

(
∆v

c

)2 dω
2π

(6.216)

We see that the energy spectrum Ũ rad
ω is independent of frequency ω. This means that if we

would integrate it over all frequencies ω ∈ [0,∞), a divergent integral would result.

In reality, all spectra have finite widths, with an upper cutoff limit set by the quantum
condition

~ωmax =
1
2

m(v + ∆v)2 −
1
2

mv2 (6.217)

which expresses that the highest possible frequency ωmax in the spectrum is that for which all
kinetic energy difference has gone into one single field quantum (photon) with energy ~ωmax.
If we adopt the picture that the total energy is quantised in terms of Nω photons radiated during
the process, we find that

Ũ rad
ω dω
~ω

= dNω (6.218)

or, for an electron where q′ = − |e|, where e is the elementary charge,

dNω =
e2

4πε0~c
2

3π

(
∆v

c

)2 dω
ω
≈

1
137

2
3π

(
∆v

c

)2 dω
ω

(6.219)

where we used the value of the fine structure constant α = e2/(4πε0~c) ≈ 1/137.

Even if the number of photons becomes infinite when ω→ 0, these photons have negligible
energies so that the total radiated energy is still finite.

C END OF EXAMPLE 6.3
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7
Relativistic

Electrodynamics

We saw in chapter 3 how the derivation of the electrodynamic potentials led, in
a most natural way, to the introduction of a characteristic, finite speed of propa-
gation in vacuum that equals the speed of light c = 1/

√
ε0µ0 and which can be

considered as a constant of nature. To take this finite speed of propagation of
information into account, and to ensure that our laws of physics be independent
of any specific coordinate frame, requires a treatment of electrodynamics in a rel-
ativistically covariant (coordinate independent) form. This is the object of this
chapter.

7.1 The special theory of relativity
An inertial system, or inertial reference frame, is a system of reference, or rigid
coordinate system, in which the law of inertia (Galileo’s law, Newton’s first law)
holds. In other words, an inertial system is a system in which free bodies move
uniformly and do not experience any acceleration. The special theory of relativ-
ity1 describes how physical processes are interrelated when observed in different

1The Special Theory of Relativity, by the American physicist and philosopher David Bohm, opens
with the following paragraph [4]:

‘The theory of relativity is not merely a scientific development of great importance in its
own right. It is even more significant as the first stage of a radical change in our basic
concepts, which began in physics, and which is spreading into other fields of science,
and indeed, even into a great deal of thinking outside of science. For as is well known,
the modern trend is away from the notion of sure ‘absolute’ truth, (i.e., one which holds
independently of all conditions, contexts, degrees, and types of approximation etc..) and
toward the idea that a given concept has significance only in relation to suitable broader
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inertial systems in uniform, rectilinear motion relative to each other and is based
on two postulates:

Postulate 7.1 (Relativity principle; Poincaré, 1905). All laws of physics (except
the laws of gravitation) are independent of the uniform translational motion of the
system on which they operate.

Postulate 7.2 (Einstein, 1905). The velocity of light in empty space is independent
of the motion of the source that emits the light.

A consequence of the first postulate is that all geometrical objects (vectors,
tensors) in an equation describing a physical process must transform in a covariant
manner, i.e., in the same way.

7.1.1 The Lorentz transformation
Let us consider two three-dimensional inertial systems Σ and Σ′ in vacuum which
are in rectilinear motion relative to each other in such a way that Σ′ moves with
constant velocity v along the x axis of the Σ system. The times and the spatial
coordinates as measured in the two systems are t and (x, y, z), and t′ and (x′, y′, z′),
respectively. At time t = t′ = 0 the origins O and O′ and the x and x′ axes of the
two inertial systems coincide and at a later time t they have the relative location
as depicted in figure 7.1 on page 133, referred to as the standard configuration.

For convenience, let us introduce the two quantities

β =
v

c
(7.1)

γ =
1√

1 − β2
(7.2)

where v = |v|. In the following, we shall make frequent use of these shorthand
notations.

As shown by Einstein, the two postulates of special relativity require that the
spatial coordinates and times as measured by an observer in Σ and Σ′, respectively,
are connected by the following transformation:

ct′ = γ(ct − xβ) (7.3a)

x′ = γ(x − vt) (7.3b)

y′ = y (7.3c)

z′ = z (7.3d)

forms of reference, within which that concept can be given its full meaning.’
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P(t′, x′, y′, z′)

vt

P(t, x, y, z)

z′

x x′

z

O O′

Σ Σ′
y y′

v

FIGURE 7.1: Two inertial systems Σ and Σ′ in relative motion with velocity v
along the x = x′ axis. At time t = t′ = 0 the origin O′ of Σ′ coincided with the
origin O of Σ. At time t, the inertial system Σ′ has been translated a distance vt
along the x axis in Σ. An event represented by P(t, x, y, z) in Σ is represented by

P(t′, x′, y′, z′) in Σ′.

Taking the difference between the square of (7.3a) and the square of (7.3b) we
find that

c2t′2 − x′2 = γ2 (c2t2 − 2xcβt + x2β2 − x2 + 2xvt − v2t2)
=

1

1 −
v2

c2

[
c2t2

(
1 −

v2

c2

)
− x2

(
1 −

v2

c2

)]

= c2t2 − x2

(7.4)

From equations (7.3) on page 132 we see that the y and z coordinates are unaf-
fected by the translational motion of the inertial system Σ′ along the x axis of sys-
tem Σ. Using this fact, we find that we can generalise the result in equation (7.4)
to

c2t2 − x2 − y2 − z2 = c2t′2 − x′2 − y′2 − z′2 (7.5)

which means that if a light wave is transmitted from the coinciding origins O and
O′ at time t = t′ = 0 it will arrive at an observer at (x, y, z) at time t in Σ and an
observer at (x′, y′, z′) at time t′ in Σ′ in such a way that both observers conclude
that the speed (spatial distance divided by time) of light in vacuum is c. Hence, the
speed of light in Σ and Σ′ is the same. A linear coordinate transformation which
has this property is called a (homogeneous) Lorentz transformation.
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7.1.2 Lorentz space
Let us introduce an ordered quadruple of real numbers, enumerated with the help
of upper indices µ = 0, 1, 2, 3, where the zeroth component is ct (c is the speed
of light and t is time), and the remaining components are the components of the
ordinary R3 radius vector x defined in equation (M.1) on page 180:

xµ = (x0, x1, x2, x3) = (ct, x, y, z) ≡ (ct, x) (7.6)

We want to interpret this quadruple xµ as (the component form of) a radius four-
vector in a real, linear, four-dimensional vector space.2 We require that this four-
dimensional space be a Riemannian space, i.e., a metric space where a ‘distance’
and a scalar product are defined. In this space we therefore define a metric tensor,
also known as the fundamental tensor, which we denote by gµν.

Radius four-vector in contravariant and covariant form

The radius four-vector xµ = (x0, x1, x2, x3) = (ct, x), as defined in equation (7.6),
is, by definition, the prototype of a contravariant vector (or, more accurately, a
vector in contravariant component form). To every such vector there exists a dual
vector. The vector dual to xµ is the covariant vector xµ, obtained as

xµ = gµνxν (7.7)

where the upper index µ in xµ is summed over and is therefore a dummy index
and may be replaced by another dummy index ν This summation process is an
example of index contraction and is often referred to as index lowering.

Scalar product and norm
The scalar product of xµ with itself in a Riemannian space is defined as

gµνxνxµ = xµxµ (7.8)

This scalar product acts as an invariant ‘distance’, or norm, in this space.
To describe the physical property of Lorentz transformation invariance, de-

scribed by equation (7.5) on page 133, in mathematical language it is convenient

2The British mathematician and philosopher Alfred North Whitehead writes in his book The Concept
of Nature [13]:

‘I regret that it has been necessary for me in this lecture to administer a large dose of
four-dimensional geometry. I do not apologise, because I am really not responsible for the
fact that nature in its most fundamental aspect is four-dimensional. Things are what they
are. . . .’
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to perceive it as the manifestation of the conservation of the norm in a 4D Rieman-
nian space. Then the explicit expression for the scalar product of xµ with itself in
this space must be

xµxµ = c2t2 − x2 − y2 − z2 (7.9)

We notice that our space will have an indefinite norm which means that we deal
with a non-Euclidean space. We call the four-dimensional space (or space-time)
with this property Lorentz space and denote it L4. A corresponding real, linear 4D
space with a positive definite norm which is conserved during ordinary rotations
is a Euclidean vector space. We denote such a space R4.

Metric tensor

By choosing the metric tensor in L4 as

gµν =


1 if µ = ν = 0
−1 if µ = ν = i = j = 1, 2, 3
0 if µ , ν

(7.10)

or, in matrix notation,

(gµν) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (7.11)

i.e., a matrix with a main diagonal that has the sign sequence, or signature,
{+,−,−,−}, the index lowering operation in our chosen flat 4D space becomes
nearly trivial:

xµ = gµνxν = (ct,−x) (7.12)

Using matrix algebra, this can be written
x0

x1

x2

x3

 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




x0

x1

x2

x3

 =


x0

−x1

−x2

−x3

 (7.13)

Hence, if the metric tensor is defined according to expression (7.10) the covari-
ant radius four-vector xµ is obtained from the contravariant radius four-vector xµ

simply by changing the sign of the last three components. These components are
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referred to as the space components; the zeroth component is referred to as the
time component.

As we see, for this particular choice of metric, the scalar product of xµ with
itself becomes

xµxµ = (ct, x) · (ct,−x) = c2t2 − x2 − y2 − z2 (7.14)

which indeed is the desired Lorentz transformation invariance as required by equa-
tion (7.9) on page 135. Without changing the physics, one can alternatively choose
a signature {−,+,+,+}. The latter has the advantage that the transition from 3D
to 4D becomes smooth, while it will introduce some annoying minus signs in the
theory. In current physics literature, the signature {+,−,−,−} seems to be the most
commonly used one.

The L4 metric tensor equation (7.10) on page 135 has a number of interesting
properties: firstly, we see that this tensor has a trace Tr

(
gµν
)
= −2 whereas in R4,

as in any vector space with definite norm, the trace equals the space dimension-
ality. Secondly, we find, after trivial algebra, that the following relations between
the contravariant, covariant and mixed forms of the metric tensor hold:

gµν = gνµ (7.15a)

gµν = gµν (7.15b)

gνκg
κµ = gµν = δ

µ
ν (7.15c)

gνκgκµ = g
ν
µ = δ

ν
µ (7.15d)

Here we have introduced the 4D version of the Kronecker delta δµν , a mixed four-
tensor of rank 2 which fulfils

δµν = δ
ν
µ =

{
1 if µ = ν
0 if µ , ν

(7.16)

Invariant line element and proper time

The differential distance ds between the two points xµ and xµ + dxµ in L4 can be
calculated from the Riemannian metric, given by the quadratic differential form

ds2 = gµνdxνdxµ = dxµdxµ = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 (7.17)

where the metric tensor is as in equation (7.10) on page 135. As we see, this
form is indefinite as expected for a non-Euclidean space. The square root of this
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expression is the invariant line element

ds = c dt

√√√√1 −
1
c2

[(
dx
dt

1)2

+

(
dx
dt

2)2

+

(
dx
dt

3)2
]

= c dt

√
1 −

1
c2

[
(vx)2 + (vy)2 + (vz)2

]
= c dt

√
1 −

v2

c2

= c dt
√

1 − β2 = c
dt
γ
= c dτ

(7.18)

where we introduced

dτ = dt/γ (7.19)

Since dτ measures the time when no spatial changes are present, it is called the
proper time.

Expressing the property of the Lorentz transformation described by equa-
tions (7.5) on page 133 in terms of the differential interval ds and comparing
with equation (7.17) on page 136, we find that

ds2 = c2dt2 − dx2 − dy2 − dz2 (7.20)

is invariant, i.e., remains unchanged, during a Lorentz transformation. Conversely,
we may say that every coordinate transformation which preserves this differential
interval is a Lorentz transformation.

If in some inertial system

dx2 + dy2 + dz2 < c2dt2 (7.21)

ds is a time-like interval, but if

dx2 + dy2 + dz2 > c2dt2 (7.22)

ds is a space-like interval, whereas

dx2 + dy2 + dz2 = c2dt2 (7.23)

is a light-like interval; we may also say that in this case we are on the light cone.
A vector which has a light-like interval is called a null vector. The time-like,
space-like or light-like aspects of an interval ds are invariant under a Lorentz
transformation. I.e., it is not possible to change a time-like interval into a space-
like one or vice versa via a Lorentz transformation.
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Four-vector fields
Any quantity which relative to any coordinate system has a quadruple of real
numbers and transforms in the same way as the radius four-vector xµ does, is
called a four-vector. In analogy with the notation for the radius four-vector we
introduce the notation aµ = (a0, a) for a general contravariant four-vector field in
L4 and find that the ‘lowering of index’ rule, formula (7.7) on page 134, for such
an arbitrary four-vector yields the dual covariant four-vector field

aµ(xκ) = gµνaν(xκ) = (a0(xκ),−a(xκ)) (7.24)

The scalar product between this four-vector field and another one bµ(xκ) is

gµνaν(xκ)bµ(xκ) = (a0,−a) · (b0,b) = a0b0 − a · b (7.25)

which is a scalar field, i.e., an invariant scalar quantity α(xκ) which depends on
time and space, as described by xκ = (ct, x, y, z).

The Lorentz transformation matrix
Introducing the transformation matrix

(
Λµν
)
=


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 (7.26)

the linear Lorentz transformation (7.3) on page 132, i.e., the coordinate transfor-
mation xµ → x′µ = x′µ(x0, x1, x2, x3), from one inertial system Σ to another inertial
system Σ′ in the standard configuration, can be written

x′µ = Λµνxν (7.27)

The Lorentz group
It is easy to show, by means of direct algebra, that two successive Lorentz trans-
formations of the type in equation (7.27), and defined by the speed parameters β1

and β2, respectively, correspond to a single transformation with speed parameter

β =
β1 + β2

1 + β1β2
(7.28)

This means that the nonempty set of Lorentz transformations constitutes a closed
algebraic structure with a binary operation which is associative. Furthermore,
one can show that this set possesses at least one identity element and at least one
inverse element. In other words, this set of Lorentz transformations constitutes
a mathematical group. However tempting, we shall not make any further use of
group theory.
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θ

θ

X′0

x′1

x1

X0

FIGURE 7.2: Minkowski space can be considered an ordinary Euclidean space
where a Lorentz transformation from (x1, X0 = ict) to (x′1, X′0 = ict′) corresponds
to an ordinary rotation through an angle θ. This rotation leaves the Euclidean

distance
(

x1
)2
+
(
X0
)2
= x2 − c2t2 invariant.

7.1.3 Minkowski space
Specifying a point xµ = (x0, x1, x2, x3) in 4D space-time is a way of saying that
‘something takes place at a certain time t = x0/c and at a certain place (x, y, z) =
(x1, x2, x3)’. Such a point is therefore called an event. The trajectory for an event
as a function of time and space is called a world line. For instance, the world line
for a light ray which propagates in vacuum is the trajectory x0 = x1.

Introducing

X0 = ix0 = ict (7.29a)

X1 = x1 (7.29b)

X2 = x2 (7.29c)

X3 = x3 (7.29d)

dS = ids (7.29e)

where i =
√
−1, we see that equation (7.17) on page 136 transforms into

dS 2 = (dX0)2 + (dX1)2 + (dX2)2 + (dX3)2 (7.30)

i.e., into a 4D differential form which is positive definite just as is ordinary 3D
Euclidean space R3. We shall call the 4D Euclidean space constructed in this way
the Minkowski space M4.3

3The fact that our Riemannian space can be transformed in this way into a Euclidean one means that
it is, strictly speaking, a pseudo-Riemannian space.
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x0 = ct

ct

x′1

x′0

x1 = xO = O′
ϕ

P

P′

ϕ

x0 = x1

wΣ

FIGURE 7.3: Minkowski diagram depicting geometrically the transformation
(7.33) from the unprimed system to the primed system. Here w denotes the world
line for an event and the line x0 = x1 ⇔ x = ct the world line for a light ray
in vacuum. Note that the event P is simultaneous with all points on the x1 axis
(t = 0), including the origin O. The event P′, which is simultaneous with all
points on the x′ axis, including O′ = O, to an observer at rest in the primed sys-
tem, is not simultaneous with O in the unprimed system but occurs there at time

|P − P′| /c.
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As before, it suffices to consider the simplified case where the relative motion
between Σ and Σ′ is along the x axes. Then

dS 2 = (dX0)2 + (dX1)2 = (dX0)2 + (dx1)2 (7.31)

and we consider the X0 and X1 = x1 axes as orthogonal axes in a Euclidean space.
As in all Euclidean spaces, every interval is invariant under a rotation of the X0x1

plane through an angle θ into X′0x′1:

X′0 = −x1 sin θ + X0 cos θ (7.32a)

x′1 = x1 cos θ + X0 sin θ (7.32b)

See figure 7.2 on page 139.
If we introduce the angle ϕ = −iθ, often called the rapidity or the Lorentz

boost parameter, and transform back to the original space and time variables by
using equation (7.29) on page 139 backwards, we obtain

ct′ = −x sinhϕ + ct coshϕ (7.33a)

x′ = x coshϕ − ct sinhϕ (7.33b)

which are identical to the transformation equations (7.3) on page 132 if we let

sinhϕ = γβ (7.34a)

coshϕ = γ (7.34b)

tanhϕ = β (7.34c)

It is therefore possible to envisage the Lorentz transformation as an ‘ordinary’
rotation in the 4D Euclidean space M4. Such a rotation in M4 corresponds to a
coordinate change in L4 as depicted in figure 7.3 on page 140. equation (7.28)
on page 138 for successive Lorentz transformation then corresponds to the tanh
addition formula

tanh(ϕ1 + ϕ2) =
tanhϕ1 + tanhϕ2

1 + tanhϕ1 tanhϕ2
(7.35)

The use of ict and M4, which leads to the interpretation of the Lorentz trans-
formation as an ‘ordinary’ rotation, may, at best, be illustrative, but is not very
physical. Besides, if we leave the flat L4 space and enter the curved space of
general relativity, the ‘ict’ trick will turn out to be an impasse. Let us therefore
immediately return to L4 where all components are real valued.

Downloaded from http://www.plasma.uu.se/CED/Book Version released 16th January 2007 at 20:40. 141



7. Relativistic Electrodynamics

7.2 Covariant classical mechanics
The invariance of the differential ‘distance’ ds in L4, and the associated differ-
ential proper time dτ [see equation (7.18) on page 137] allows us to define the
four-velocity

uµ =
dx
dτ

µ

= γ(c, v) =

 c√
1 − v2

c2

,
v√

1 − v2

c2

 = (u0,u) (7.36)

which, when multiplied with the scalar invariant m0 yields the four-momentum

pµ = m0
dx
dτ

µ

= m0γ(c, v) =

 m0c√
1 − v2

c2

,
m0v√
1 − v2

c2

 = (p0,p) (7.37)

From this we see that we can write

p = mv (7.38)

where

m = γm0 =
m0√
1 − v2

c2

(7.39)

We can interpret this such that the Lorentz covariance implies that the mass-like
term in the ordinary 3D linear momentum is not invariant. A better way to look
at this is that p = mv = γm0v is the covariantly correct expression for the kinetic
three-momentum.

Multiplying the zeroth (time) component of the four-momentum pµ with the
scalar invariant c, we obtain

cp0 = γm0c2 =
m0c2√
1 − v2

c2

= mc2 (7.40)

Since this component has the dimension of energy and is the result of a covariant
description of the motion of a particle with its kinetic momentum described by
the spatial components of the four-momentum, equation (7.37), we interpret cp0

as the total energy E. Hence,

cpµ = (cp0, cp) = (E, cp) (7.41)
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Scalar multiplying this four-vector with itself, we obtain

cpµcpµ = c2gµνpνpµ = c2[(p0)2 − (p1)2 − (p2)2 − (p3)2]

= (E,−cp) · (E, cp) = E2 − c2p2

=
(m0c2)2

1 − v2

c2

(
1 −

v2

c2

)
= (m0c2)2

(7.42)

Since this is an invariant, this equation holds in any inertial frame, particularly in
the frame where p = 0 and there we have

E = m0c2 (7.43)

This is probably the most famous formula in physics history.

7.3 Covariant classical electrodynamics
Let us consider a charge density which in its rest inertial system is denoted by ρ0.
The four-vector (in contravariant component form)

jµ = ρ0
dxµ

dτ
= ρ0uµ = ρ0γ(c, v) = (ρc, ρv) (7.44)

where we introduced

ρ = γρ0 (7.45)

is called the four-current.
The contravariant form of the four-del operator ∂µ = ∂/∂xµ is defined in

equation (M.37) on page 186 and its covariant counterpart ∂µ = ∂/∂xµ in equa-
tion (M.38) on page 186, respectively. As is shown in example M.5 on page 194,
the d’Alembert operator is the scalar product of the four-del with itself:

�2 = ∂µ∂µ = ∂µ∂
µ =

1
c2

∂2

∂t2 − ∇
2 (7.46)

Since it has the characteristics of a four-scalar, the d’Alembert operator is invariant
and, hence, the homogeneous wave equation �2 f (t, x) = 0 is Lorentz covariant.

7.3.1 The four-potential
If we introduce the four-potential

Aµ =

(
φ

c
,A
)

(7.47)
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where φ is the scalar potential and A the vector potential, defined in section 3.3
on page 40, we can write the uncoupled inhomogeneous wave equations, equa-
tions (3.16) on page 43, in the following compact (and covariant) way:

�2Aµ = µ0 jµ (7.48)

With the help of the above, we can formulate our electrodynamic equations
covariantly. For instance, the covariant form of the equation of continuity, equa-
tion (1.23) on page 10 is

∂µ jµ = 0 (7.49)

and the Lorenz-Lorentz gauge condition, equation (3.15) on page 43, can be writ-
ten

∂µAµ = 0 (7.50)

The gauge transformations (3.11) on page 42 in covariant form are

Aµ 7→ A′µ = Aµ + ∂µΓ(xν) (7.51)

If only one dimension Lorentz contracts (for instance, due to relative motion
along the x direction), a 3D spatial volume element transforms according to

dV = d3x =
1
γ

dV0 = dV0

√
1 − β2 = dV0

√
1 −

v2

c2 (7.52)

where dV0 denotes the volume element as measured in the rest system, then from
equation (7.45) on page 143 we see that

ρdV = ρ0dV0 (7.53)

i.e., the charge in a given volume is conserved. We can therefore conclude that
the elementary charge is a universal constant.

7.3.2 The Liénard-Wiechert potentials
Let us now solve the the inhomogeneous wave equations (3.16) on page 43 in
vacuum for the case of a well-localised charge q′ at a source point defined by the
radius four-vector x′µ ≡ (x′0 = ct′, x′1, x′2, x′3). The field point (observation point)
is denoted by the radius four-vector xµ = (x0 = ct, x1, x2, x3).

In the rest system we know that the solution is simply

(Aµ)0 =

(
φ

c
,A
)

v=0
=

(
q′

4πε0

1
c |x − x′|0

, 0
)

(7.54)
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where |x − x′|0 is the usual distance from the source point to the field point, eval-
uated in the rest system (signified by the index ‘0’).

Let us introduce the relative radius four-vector between the source point and
the field point:

Rµ = xµ − x′µ = (c(t − t′), x − x′) (7.55)

Scalar multiplying this relative four-vector with itself, we obtain

RµRµ = (c(t − t′), x − x′) · (c(t − t′),−(x − x′)) = c2(t − t′)2 −
∣∣x − x′

∣∣2
(7.56)

We know that in vacuum the signal (field) from the charge q′ at x′µ propagates
to xµ with the speed of light c so that∣∣x − x′

∣∣ = c(t − t′) (7.57)

Inserting this into equation (7.56) above, we see that

RµRµ = 0 (7.58)

or that equation (7.55) can be written

Rµ = (
∣∣x − x′

∣∣ , x − x′) (7.59)

Now we want to find the correspondence to the rest system solution, equa-
tion (7.54) on page 144, in an arbitrary inertial system. We note from equa-
tion (7.36) on page 142 that in the rest system

(uµ)0 =

 c√
1 − v2

c2

,
v√

1 − v2

c2


v=0

= (c, 0) (7.60)

and

(Rµ)0 = (
∣∣x − x′

∣∣ , x − x′)0 = (
∣∣x − x′

∣∣
0 , (x − x′)0) (7.61)

As all scalar products, uµRµ is invariant, which means that we can evaluate it
in any inertial system and it will have the same value in all other inertial systems.
If we evaluate it in the rest system the result is:

uµRµ =
(
uµRµ

)
0 = (uµ)0(Rµ)0

= (c, 0) · (
∣∣x − x′

∣∣
0 ,−(x − x′)0) = c

∣∣x − x′
∣∣
0

(7.62)
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We therefore see that the expression

Aµ =
q′

4πε0

uµ

cuνRν
(7.63)

subject to the condition RµRµ = 0 has the proper transformation properties (proper
tensor form) and reduces, in the rest system, to the solution equation (7.54) on
page 144. It is therefore the correct solution, valid in any inertial system.

According to equation (7.36) on page 142 and equation (7.59) on page 145

uνRν = γ(c, v) ·
(∣∣x − x′

∣∣ ,−(x − x′)
)
= γ

(
c
∣∣x − x′

∣∣ − v · (x − x′)
)

(7.64)

Generalising expression (7.1) on page 132 to vector form:

β = β v̂
def
≡

v
c

(7.65)

and introducing

s
def
≡
∣∣x − x′

∣∣ − v · (x − x′)
c

≡
∣∣x − x′

∣∣ − β · (x − x′) (7.66)

we can write

uνRν = γcs (7.67)

and

uµ

cuνRν
=

(
1
cs
,

v
c2s

)
(7.68)

from which we see that the solution (7.63) can be written

Aµ(xκ) =
q′

4πε0

(
1
cs
,

v
c2s

)
=

(
φ

c
,A
)

(7.69)

where in the last step the definition of the four-potential, equation (7.47) on page 143,
was used. Writing the solution in the ordinary 3D way, we conclude that for a very
localised charge volume, moving relative an observer with a velocity v, the scalar
and vector potentials are given by the expressions

φ(t, x) =
q′

4πε0

1
s
=

q′

4πε0

1
|x − x′| − β · (x − x′)

(7.70a)

A(t, x) =
q′

4πε0c2

v
s
=

q′

4πε0c2

v
|x − x′| − β · (x − x′)

(7.70b)

These potentials are the Liénard-Wiechert potentials that we derived in a more
complicated and restricted way in subsection 6.3.1 on page 93.
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7.3.3 The electromagnetic field tensor
Consider a vectorial (cross) product c between two ordinary vectors a and b:

c = a × b = εi jkaib j x̂k

= (a2b3 − a3b2)x̂1 + (a3b1 − a1b3)x̂2 + (a1b2 − a2b1)x̂3
(7.71)

We notice that the kth component of the vector c can be represented as

ck = aib j − a jbi = ci j = −c ji, i, j , k (7.72)

In other words, the pseudovector c = a×b can be considered as an antisymmetric
tensor of rank two. The same is true for the curl operator ∇× operating on a polar
vector. For instance, the Maxwell equation

∇ × E = −
∂B
∂t

(7.73)

can in this tensor notation be written

∂E j

∂xi −
∂Ei

∂x j = −
∂Bi j

∂t
(7.74)

We know from chapter 3 that the fields can be derived from the electromag-
netic potentials in the following way:

B = ∇ × A (7.75a)

E = −∇φ −
∂A
∂t

(7.75b)

In component form, this can be written

Bi j =
∂A j

∂xi −
∂Ai

∂x j = ∂iA j − ∂ jAi (7.76a)

Ei = −
∂φ

∂xi −
∂Ai

∂t
= −∂iφ − ∂tAi (7.76b)

From this, we notice the clear difference between the axial vector (pseudovector)
B and the polar vector (‘ordinary vector’) E.

Our goal is to express the electric and magnetic fields in a tensor form where
the components are functions of the covariant form of the four-potential, equa-
tion (7.47) on page 143:

Aµ =

(
φ

c
,A
)

(7.77)
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Inspection of (7.77) and equation (7.76) on page 147 makes it natural to define
the four-tensor

Fµν =
∂Aν

∂xµ
−
∂Aµ

∂xν
= ∂µAν − ∂νAµ (7.78)

This anti-symmetric (skew-symmetric), four-tensor of rank 2 is called the electro-
magnetic field tensor. In matrix representation, the contravariant field tensor can
be written

(Fµν) =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By
Ey/c Bz 0 −Bx

Ez/c −By Bx 0

 (7.79)

We note that the field tensor is a sort of four-dimensional curl of the four-potential
vector Aµ.

The covariant field tensor is obtained from the contravariant field tensor in the
usual manner by index lowering

Fµν = gµκgνλFκλ = ∂µAν − ∂νAµ (7.80)

which in matrix representation becomes

(
Fµν

)
=


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By
−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0

 (7.81)

Comparing formula (7.81) above with formula (7.79) we see that the covariant
field tensor is obtained from the contravariant one by a transformation E→ −E.

That the two Maxwell source equations can be written

∂µFµν = µ0 jν (7.82)

is immediately observed by explicitly solving this covariant equation. Setting
ν = 0, corresponding to the first/leftmost column in the matrix representation of
the covariant component form of the electromagnetic field tensor, Fµν, i.e., equa-
tion (7.79) above, we see that

∂F00

∂x0 +
∂F10

∂x1 +
∂F20

∂x2 +
∂F30

∂x3 = 0 +
1
c

(
∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z

)
=

1
c
∇ · E = µ0 j0 = µ0cρ

(7.83)
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or, equivalently (recalling that ε0µ0 = 1/c2),

∇ · E =
ρ

ε0
(7.84)

which we recognise at the Maxwell source equation for the electric field, equa-
tion (1.45a) on page 15.

For ν = 1 (the second column in equation (7.79) on page 148), equation (7.82)
on page 148 yields

∂F01

∂x0 +
∂F11

∂x1 +
∂F21

∂x2 +
∂F31

∂x3 = −
1
c2

∂Ex

∂t
+ 0 +

∂Bz

∂y
−
∂By
∂z
= µ0 j1 = µ0ρvx

(7.85)

This result can be rewritten as
∂Bz

∂y
−
∂By
∂z
− ε0µ0

∂Ex

∂t
= µ0 jx (7.86)

or, equivalently, as

(∇ × B)x = µ0 jx + ε0µ0
∂Ex

∂t
(7.87)

and similarly for ν = 2, 3. In summary, we can write the result in three-vector
form as

∇ × B = µ0j(t, x) + ε0µ0
∂E
∂t

(7.88)

which we recognise as the Maxwell source equation for the magnetic field, equa-
tion (1.45d) on page 15.

With the help of the fully antisymmetric rank-4 pseudotensor

εµνκλ =


1 if µ, ν, κ, λ is an even permutation of 0,1,2,3
0 if at least two of µ, ν, κ, λ are equal
−1 if µ, ν, κ, λ is an odd permutation of 0,1,2,3

(7.89)

which can be viewed as a generalisation of the Levi-Civita tensor, formula (M.18)
on page 183, we can introduce the dual electromagnetic tensor

?Fµν = εµνκλFκλ (7.90)

In matrix form the dual field tensor is

(
?Fµν

)
=


0 −cBx −cBy −cBz

cBx 0 Ez −Ey

cBy −Ez 0 Ex

cBz Ey −Ex 0

 (7.91)
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i.e., the dual field tensor is obtained from the ordinary field tensor by the duality
transformation E→ c2B and B→ −E.

The covariant form of the two Maxwell field equations

∇ × E = −
∂B
∂t

(7.92)

∇ · B = 0 (7.93)

can then be written

∂µ
?Fµν = 0 (7.94)

Explicit evaluation shows that this corresponds to (no summation!)

∂κFµν + ∂µFνκ + ∂νFκµ = 0 (7.95)

sometimes referred to as the Jacobi identity. Hence, equation (7.82) on page 148
and equation (7.95) constitute Maxwell’s equations in four-dimensional formal-
ism.

It is interesting to note that equation (7.82) on page 148 and

∂µ
?Fµν = µ0 jνm (7.96)

where jm is the magnetic four-current, represent the covariant form of Dirac’s
symmetrised Maxwell equations (1.50) on page 16.
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8
Electromagnetic

Fields and
Particles

In previous chapters, we calculated the electromagnetic fields and potentials from
arbitrary, but prescribed distributions of charges and currents. In this chapter we
study the general problem of interaction between electric and magnetic fields and
electrically charged particles. The analysis is based on Lagrangian and Hamil-
tonian methods, is fully covariant, and yields results which are relativistically
correct.

8.1 Charged particles in an electromagnetic field
We first establish a relativistically correct theory describing the motion of charged
particles in prescribed electric and magnetic fields. From these equations we may
then calculate the charged particle dynamics in the most general case.

8.1.1 Covariant equations of motion
We will show that for our problem we can derive the correct equations of mo-
tion by using in four-dimensional L4 a function with similar properties as a La-
grange function in 3D and then apply a variational principle. We will also show
that we can find a Hamiltonian-type function in 4D and solve the corresponding
Hamilton-type equations to obtain the correct covariant formulation of classical
electrodynamics.
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8. Electromagnetic Fields and Particles

Lagrange formalism
Let us now introduce a generalised action

S4 =

∫
L4(xµ, uµ) dτ (8.1)

where dτ is the proper time defined via equation (7.18) on page 137, and L4 acts
as a kind of generalisation to the common 3D Lagrangian so that the variational
principle

δS4 = δ

∫ τ1

τ0

L4(xµ, uµ) dτ = 0 (8.2)

with fixed endpoints τ0, τ1 is fulfilled. We require that L4 is a scalar invariant
which does not contain higher than the second power of the four-velocity uµ in
order that the equations of motion be linear.

According to formula (M.48) on page 188 the ordinary 3D Lagrangian is the
difference between the kinetic and potential energies. A free particle has only
kinetic energy. If the particle mass is m0 then in 3D the kinetic energy is m0v

2/2.
This suggests that in 4D the Lagrangian for a free particle should be

Lfree
4 =

1
2

m0uµuµ (8.3)

For an interaction with the electromagnetic field we can introduce the interaction
with the help of the four-potential given by equation (7.77) on page 147 in the
following way

L4 =
1
2

m0uµuµ + quµAµ(xν) (8.4)

We call this the four-Lagrangian and shall now show how this function, together
with the variation principle, formula (8.2), yields covariant results which are phys-
ically correct.

The variation principle (8.2) with the 4D Lagrangian (8.4) inserted, leads to

δS4 = δ

∫ τ1

τ0

(m0

2
uµuµ + quµAµ

)
dτ

=

∫ τ1

τ0

[
m0

2
∂(uµuµ)
∂uµ

δuµ + q
(

Aµδuµ + uµ
∂Aµ

∂xν
δxν
)]

dτ

=

∫ τ1

τ0

[
m0uµδuµ + q

(
Aµδuµ + uµ∂νAµδxν

)]
dτ = 0

(8.5)

According to equation (7.36) on page 142, the four-velocity is

uµ =
dx
dτ

µ

(8.6)
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Charged particles in an electromagnetic field

which means that we can write the variation of uµ as a total derivative with respect
to τ :

δuµ = δ
(

dx
dτ

µ)
=

d
dτ

(δxµ) (8.7)

Inserting this into the first two terms in the last integral in equation (8.5) on
page 154, we obtain

δS4 =

∫ τ1

τ0

(
m0uµ

d
dτ

(δxµ) + qAµ
d
dτ

(δxµ) + quµ∂νAµδxν
)

dτ (8.8)

Partial integration in the two first terms in the right hand member of (8.8) gives

δS4 =

∫ τ1

τ0

(
−m0

duµ
dτ

δxµ − q
dAµ

dτ
δxµ + quµ∂νAµδxν

)
dτ (8.9)

where the integrated parts do not contribute since the variations at the endpoints
vanish. A change of irrelevant summation index from µ to ν in the first two terms
of the right hand member of (8.9) yields, after moving the ensuing common factor
δxν outside the parenthesis, the following expression:

δS4 =

∫ τ1

τ0

(
−m0

duν
dτ
− q

dAν

dτ
+ quµ∂νAµ

)
δxν dτ (8.10)

Applying well-known rules of differentiation and the expression (7.36) for the
four-velocity, we can express dAν/dτ as follows:

dAν

dτ
=
∂Aν

∂xµ
dxµ

dτ
= ∂µAνuµ (8.11)

By inserting this expression (8.11) into the second term in right-hand member of
equation (8.10) above, and noting the common factor quµ of the resulting term
and the last term, we obtain the final variational principle expression

δS4 =

∫ τ1

τ0

[
−m0

duν
dτ
+ quµ

(
∂νAµ − ∂µAν

)]
δxν dτ (8.12)

Since, according to the variational principle, this expression shall vanish and δxν

is arbitrary between the fixed end points τ0 and τ1, the expression inside
[ ]

in
the integrand in the right hand member of equation (8.12) must vanish. In other
words, we have found an equation of motion for a charged particle in a prescribed
electromagnetic field:

m0
duν
dτ
= quµ

(
∂νAµ − ∂µAν

)
(8.13)
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With the help of formula (7.80) on page 148 for the covariant component form of
the field tensor, we can express this equation in terms of the electromagnetic field
tensor in the following way:

m0
duν
dτ
= quµFνµ (8.14)

This is the sought-for covariant equation of motion for a particle in an electro-
magnetic field. It is often referred to as the Minkowski equation. As the reader
can easily verify, the spatial part of this 4-vector equation is the covariant (rela-
tivistically correct) expression for the Newton-Lorentz force equation.

Hamiltonian formalism
The usual Hamilton equations for a 3D space are given by equation (M.55) on
page 189 in appendix M. These six first-order partial differential equations are

∂H
∂pi
=

dqi

dt
(8.15a)

∂H
∂qi
= −

dpi

dt
(8.15b)

where H(pi, qi, t) = piq̇i − L(qi, q̇i, t) is the ordinary 3D Hamiltonian, qi is a gen-
eralised coordinate and pi is its canonically conjugate momentum.

We seek a similar set of equations in 4D space. To this end we introduce a
canonically conjugate four-momentum pµ in an analogous way as the ordinary
3D conjugate momentum:

pµ =
∂L4

∂uµ
(8.16)

and utilise the four-velocity uµ, as given by equation (7.36) on page 142, to define
the four-Hamiltonian

H4 = pµuµ − L4 (8.17)

With the help of these, the radius four-vector xµ, considered as the generalised
four-coordinate, and the invariant line element ds, defined in equation (7.18) on
page 137, we introduce the following eight partial differential equations:

∂H4

∂pµ
=

dxµ
dτ

(8.18a)

∂H4

∂xµ
= −

dpµ
dτ

(8.18b)
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which form the four-dimensional Hamilton equations.
Our strategy now is to use equation (8.16) on page 156 and equations (8.18) on

page 156 to derive an explicit algebraic expression for the canonically conjugate
momentum four-vector. According to equation (7.41) on page 142, c times a four-
momentum has a zeroth (time) component which we can identify with the total
energy. Hence we require that the component p0 of the conjugate four-momentum
vector defined according to equation (8.16) on page 156 be identical to the ordi-
nary 3D Hamiltonian H divided by c and hence that this cp0 solves the Hamilton
equations, equations (8.15) on page 156. This later consistency check is left as an
exercise to the reader.

Using the definition of H4, equation (8.17) on page 156, and the expression
for L4, equation (8.4) on page 154, we obtain

H4 = pµuµ − L4 = pµuµ −
1
2

m0uµuµ − quµAµ(xν) (8.19)

Furthermore, from the definition (8.16) of the canonically conjugate four-momentum
pµ, we see that

pµ =
∂L4

∂uµ
=

∂

∂uµ

(
1
2

m0uµuµ + quµAµ(xν)
)
= m0uµ + qAµ (8.20)

Inserting this into (8.19), we obtain

H4 = m0uµuµ + qAµuµ −
1
2

m0uµuµ − quµAµ(xν) =
1
2

m0uµuµ (8.21)

Since the four-velocity scalar-multiplied by itself is uµuµ = c2, we clearly see
from equation (8.21) that H4 is indeed a scalar invariant, whose value is simply

H4 =
m0c2

2
(8.22)

However, at the same time (8.20) provides the algebraic relationship

uµ =
1

m0
(pµ − qAµ) (8.23)

and if this is used in (8.21) to eliminate uµ, one gets

H4 =
m0

2

(
1

m0
(pµ − qAµ)

1
m0

(
pµ − qAµ

))
=

1
2m0

(pµ − qAµ)
(

pµ − qAµ

)
=

1
2m0

(
pµpµ − 2qAµpµ + q2AµAµ

) (8.24)
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That this four-Hamiltonian yields the correct covariant equation of motion can
be seen by inserting it into the four-dimensional Hamilton’s equations (8.18) and
using the relation (8.23):

∂H4

∂xµ
= −

q
m0

(pν − qAν)
∂Aν

∂xµ

= −
q

m0
m0uν

∂Aν

∂xµ

= −quν
∂Aν

∂xµ

= −
dpµ
dτ
= −m0

duµ
dτ
− q

∂Aµ

∂xν
uν

(8.25)

where in the last step equation (8.20) on page 157 was used. Rearranging terms,
and using equation (7.80) on page 148, we obtain

m0
duµ
dτ
= quν

(
∂µAν − ∂νAµ

)
= quνFµν (8.26)

which is identical to the covariant equation of motion equation (8.14) on page 156.
We can then safely conclude that the Hamiltonian in question is correct.

Recalling expression (7.47) on page 143 and representing the canonically con-
jugate four-momentum as pµ = (p0,p), we obtain the following scalar products:

pµpµ = (p0)2 − (p)2 (8.27a)

Aµpµ =
1
c
φp0 − (p · A) (8.27b)

AµAµ =
1
c2φ

2 − (A)2 (8.27c)

Inserting these explicit expressions into equation (8.24) on page 157, and using the
fact that for H4 is equal to the scalar value m0c2/2, as derived in equation (8.22)
on page 157, we obtain the equation

m0c2

2
=

1
2m0

[
(p0)2 − (p)2 −

2
c

qφp0 + 2q(p · A) +
q2

c2 φ
2 − q2(A)2

]
(8.28)

which is the second order algebraic equation in p0:

(p0)2 −
2q
c
φp0 −

[
(p)2 − 2qp · A + q2(A)2]︸                              ︷︷                              ︸

(p−qA)2

+
q2

c2 φ
2 − m2

0c2 = 0 (8.29)

with two possible solutions

p0 =
q
c
φ ±

√
(p − qA)2 + m2

0c2 (8.30)
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Since the zeroth component (time component) p0 of a four-momentum vector pµ

multiplied by c represents the energy [cf. equation (7.41) on page 142], the posi-
tive solution in equation (8.30) on page 158 must be identified with the ordinary
Hamilton function H divided by c. Consequently,

H ≡ cp0 = qφ + c
√

(p − qA)2 + m2
0c2 (8.31)

is the ordinary 3D Hamilton function for a charged particle moving in scalar and
vector potentials associated with prescribed electric and magnetic fields.

The ordinary Lagrange and Hamilton functions L and H are related to each
other by the 3D transformation [cf. the 4D transformation (8.17) between L4 and
H4]

L = p · v − H (8.32)

Using the explicit expressions (equation (8.31) above) and (equation (8.32)), we
obtain the explicit expression for the ordinary 3D Lagrange function

L = p · v − qφ − c
√

(p − qA)2 + m2
0c2 (8.33)

and if we make the identification

p − qA =
m0v√
1 − v2

c2

= mv (8.34)

where the quantity mv is the usual kinetic momentum, we can rewrite this expres-
sion for the ordinary Lagrangian as follows:

L = qA · v + mv2 − qφ − c
√

m2v2 + m2
0c2

= mv2 − q(φ − A · v) − mc2 = −qφ + qA · v − m0c2

√
1 −

v2

c2

(8.35)

What we have obtained is the relativistically correct (covariant) expression for
the Lagrangian describing the motion of a charged particle in scalar and vector
potentials associated with prescribed electric and magnetic fields.

8.2 Covariant field theory
So far, we have considered two classes of problems. Either we have calculated
the fields from given, prescribed distributions of charges and currents, or we have
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FIGURE 8.1: A one-dimensional chain consisting of N discrete, identical mass
points m, connected to their neighbours with identical, ideal springs with spring
constants k. The equilibrium distance between the neighbouring mass points is
a and ηi−1(t), ηi(t), ηi+1(t) are the instantaneous deviations, along the x axis, of

positions of the (i − 1)th, ith, and (i + 1)th mass point, respectively.

derived the equations of motion for charged particles in given, prescribed fields.
Let us now put the fields and the particles on an equal footing and present a theo-
retical description which treats the fields, the particles, and their interactions in a
unified way. This involves transition to a field picture with an infinite number of
degrees of freedom. We shall first consider a simple mechanical problem whose
solution is well known. Then, drawing inferences from this model problem, we
apply a similar view on the electromagnetic problem.

8.2.1 Lagrange-Hamilton formalism for fields and interactions
Consider the situation, illustrated in figure 8.1, with N identical mass points, each
with mass m and connected to its neighbour along a one-dimensional straight line,
which we choose to be the x axis, by identical ideal springs with spring constants
k (Hooke’s law). At equilibrium the mass points are at rest, distributed evenly
with a distance a to their two nearest neighbours so that the coordinate for the
ith particle is xi = iax̂ . After perturbation, the motion of mass point i will be a
one-dimensional oscillatory motion along x̂. Let us denote the deviation for mass
point i from its equilibrium position by ηi(t)x̂.

The solution to this mechanical problem can be obtained if we can find a La-
grangian (Lagrange function) L which satisfies the variational equation

δ

∫
L(ηi, η̇i, t) dt = 0 (8.36)

According to equation (M.48) on page 188, the Lagrangian is L = T − V where
T denotes the kinetic energy and V the potential energy of a classical mechanical
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system with conservative forces. In our case the Lagrangian is

L =
1
2

N

∑
i=1

[
mη̇2

i − k(ηi+1 − ηi)2] (8.37)

Let us write the Lagrangian, as given by equation (8.37), in the following way:

L =
N

∑
i=1

aLi (8.38)

Here,

Li =
1
2

[
m
a
η̇2

i − ka
(ηi+1 − ηi

a

)2
]

(8.39)

is the so called linear Lagrange density. If we now let N → ∞ and, at the
same time, let the springs become infinitesimally short according to the following
scheme:

a→ dx (8.40a)
m
a
→

dm
dx
= µ linear mass density (8.40b)

ka→ Y Young’s modulus (8.40c)
ηi+1 − ηi

a
→

∂η

∂x
(8.40d)

we obtain

L =
∫

L dx (8.41)

where

L

(
η,
∂η

∂t
,
∂η

∂x
, t
)
=

1
2

[
µ

(
∂η

∂t

)2

− Y
(
∂η

∂x

)2
]

(8.42)

Notice how we made a transition from a discrete description, in which the mass
points were identified by a discrete integer variable i = 1, 2, . . . ,N, to a continu-
ous description, where the infinitesimal mass points were instead identified by a
continuous real parameter x, namely their position along x̂.

A consequence of this transition is that the number of degrees of freedom for
the system went from the finite number N to infinity! Another consequence is
that L has now become dependent also on the partial derivative with respect to
x of the ‘field coordinate’ η. But, as we shall see, the transition is well worth the
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cost because it allows us to treat all fields, be it classical scalar or vectorial fields,
or wave functions, spinors and other fields that appear in quantum physics, on an
equal footing.

Under the assumption of time independence and fixed endpoints, the variation
principle (8.36) on page 160 yields:

δ

∫
L dt

= δ

∫∫
L

(
η,
∂η

∂t
,
∂η

∂x

)
dx dt

=

∫∫ ∂L
∂η

δη +
∂L

∂
(
∂η
∂t

) δ(∂η
∂t

)
+

∂L

∂
(
∂η
∂x

) δ(∂η
∂x

) dx dt

= 0

(8.43)

The last integral can be integrated by parts. This results in the expression

∫∫ ∂L
∂η
−
∂

∂t

 ∂L

∂
(
∂η
∂t

)
 − ∂

∂x

 ∂L

∂
(
∂η
∂x

)
 δη dx dt = 0 (8.44)

where the variation is arbitrary (and the endpoints fixed). This means that the
integrand itself must vanish. If we introduce the functional derivative

δL

δη
=
∂L

∂η
−
∂

∂x

 ∂L

∂
(
∂η
∂x

)
 (8.45)

we can express this as

δL

δη
−
∂

∂t

 ∂L

∂
(
∂η
∂t

)
 = 0 (8.46)

which is the one-dimensional Euler-Lagrange equation.
Inserting the linear mass point chain Lagrangian density, equation (8.42) on

page 161, into equation (8.46) above, we obtain the equation of motion for our
one-dimensional linear mechanical structure. It is:

µ
∂2η

∂t2 − Y
∂2η

∂x2 =

(
µ

Y
∂2

∂t2 −
∂2

∂x2

)
η = 0 (8.47)

i.e., the one-dimensional wave equation for compression waves which propagate
with phase speed vφ =

√
Y/µ along the linear structure.
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A generalisation of the above 1D results to a three-dimensional continuum is
straightforward. For this 3D case we get the variational principle

δ

∫
L dt = δ

∫∫
L d3x dt

= δ

∫
L

(
η,

∂η

∂xµ

)
d4x

=

∫∫ ∂L
∂η
−

∂

∂xµ

 ∂L

∂
(

∂η
∂xµ

)
 δη d4x

= 0

(8.48)

where the variation δη is arbitrary and the endpoints are fixed. This means that
the integrand itself must vanish:

∂L

∂η
−

∂

∂xµ

 ∂L

∂
(

∂η
∂xµ

)
 = 0 (8.49)

This constitutes the four-dimensional Euler-Lagrange equations.
Introducing the three-dimensional functional derivative

δL

δη
=
∂L

∂η
−

∂

∂xi

 ∂L

∂
(
∂η
∂xi

)
 (8.50)

we can express this as

δL

δη
−
∂

∂t

 ∂L

∂
(
∂η
∂t

)
 = 0 (8.51)

In analogy with particle mechanics (finite number of degrees of freedom), we
may introduce the canonically conjugate momentum density

π(xµ) = π(t, x) =
∂L

∂
(
∂η
∂t

) (8.52)

and define the Hamilton density

H

(
π, η,

∂η

∂xi ; t
)
= π

∂η

∂t
−L

(
η,
∂η

∂t
,
∂η

∂xi

)
(8.53)
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If, as usual, we differentiate this expression and identify terms, we obtain the
following Hamilton density equations

∂H

∂π
=
∂η

∂t
(8.54a)

δH

δη
= −

∂π

∂t
(8.54b)

The Hamilton density functions are in many ways similar to the ordinary Hamilton
functions and lead to similar results.

The electromagnetic field
Above, when we described the mechanical field, we used a scalar field η(t, x).
If we want to describe the electromagnetic field in terms of a Lagrange density
L and Euler-Lagrange equations, it comes natural to express L in terms of the
four-potential Aµ(xκ).

The entire system of particles and fields consists of a mechanical part, a field
part and an interaction part. We therefore assume that the total Lagrange density
L tot for this system can be expressed as

L tot = L mech +L inter +L field (8.55)

where the mechanical part has to do with the particle motion (kinetic energy). It
is given by L4/V where L4 is given by equation (8.3) on page 154 and V is the
volume. Expressed in the rest mass density %0, the mechanical Lagrange density
can be written

L mech =
1
2
%0uµuµ (8.56)

The L inter part describes the interaction between the charged particles and
the external electromagnetic field. A convenient expression for this interaction
Lagrange density is

L inter = jµAµ (8.57)

For the field part L field we choose the difference between magnetic and elec-
tric energy density (in analogy with the difference between kinetic and potential
energy in a mechanical field). Using the field tensor, we express this field La-
grange density as

L field =
1

4µ0
FµνFµν (8.58)
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so that the total Lagrangian density can be written

L tot =
1
2
%0uµuµ + jµAµ +

1
4µ0

FµνFµν (8.59)

From this we can calculate all physical quantities.
Using L tot in the 3D Euler-Lagrange equations, equation (8.49) on page 163

(with η replaced by Aν), we can derive the dynamics for the whole system. For
instance, the electromagnetic part of the Lagrangian density

L EM = L inter +L field = jνAν +
1

4µ0
FµνFµν (8.60)

inserted into the Euler-Lagrange equations, expression (8.49) on page 163, yields
two of Maxwell’s equations. To see this, we note from equation (8.60) above and
the results in Example 8.1 that

∂L EM

∂Aν
= jν (8.61)

Furthermore,

∂µ

[
∂L EM

∂(∂µAν)

]
=

1
4µ0

∂µ

[
∂

∂(∂µAν)
(
FκλFκλ

)]
=

1
4µ0

∂µ

{
∂

∂(∂µAν)
[
(∂κAλ − ∂λAκ)(∂κAλ − ∂λAκ)

]}
=

1
4µ0

∂µ

{
∂

∂(∂µAν)

[
∂κAλ∂κAλ − ∂

κAλ∂λAκ

− ∂λAκ∂κAλ + ∂
λAκ∂λAκ

]}
=

1
2µ0

∂µ

[
∂

∂(∂µAν)
(
∂κAλ∂κAλ − ∂

κAλ∂λAκ

)]
(8.62)

But
∂

∂(∂µAν)
(
∂κAλ∂κAλ

)
= ∂κAλ ∂

∂(∂µAν)
∂κAλ + ∂κAλ

∂

∂(∂µAν)
∂κAλ

= ∂κAλ ∂

∂(∂µAν)
∂κAλ + ∂κAλ

∂

∂(∂µAν)
gκα∂αg

λβAβ

= ∂κAλ ∂

∂(∂µAν)
∂κAλ + g

καgλβ∂κAλ
∂

∂(∂µAν)
∂αAβ

= ∂κAλ ∂

∂(∂µAν)
∂κAλ + ∂

αAβ ∂

∂(∂µAν)
∂αAβ

= 2∂µAν

(8.63)
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Similarly,

∂

∂(∂µAν)
(
∂κAλ∂λAκ

)
= 2∂νAµ (8.64)

so that

∂µ

[
∂L EM

∂(∂µAν)

]
=

1
µ0
∂µ (∂µAν − ∂νAµ) =

1
µ0
∂µFµν (8.65)

This means that the Euler-Lagrange equations, expression (8.49) on page 163,
for the Lagrangian density L EM and with Aν as the field quantity become

∂L EM

∂Aν
− ∂µ

[
∂L EM

∂(∂µAν)

]
= jν −

1
µ0
∂µFµν = 0 (8.66)

or

∂µFµν = µ0 jν (8.67)

which, according to equation (7.82) on page 148, is the covariant formulation of
Maxwell’s source equations.

Other fields
In general, the dynamic equations for most any fields, and not only electromag-
netic ones, can be derived from a Lagrangian density together with a variational
principle (the Euler-Lagrange equations). Both linear and non-linear fields are
studied with this technique. As a simple example, consider a real, scalar field η
which has the following Lagrange density:

L =
1
2
(
∂µη∂

µη − m2η2) (8.68)

Insertion into the 1D Euler-Lagrange equation, equation (8.46) on page 162, yields
the dynamic equation

(�2 − m2)η = 0 (8.69)

with the solution

η = ei(k·x−ωt) e−m|x|

|x|
(8.70)

which describes the Yukawa meson field for a scalar meson with mass m. With

π =
1
c2

∂η

∂t
(8.71)
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we obtain the Hamilton density

H =
1
2
[
c2π2 + (∇η)2 + m2η2] (8.72)

which is positive definite.
Another Lagrangian density which has attracted quite some interest is the

Proca Lagrangian

L EM = L inter +L field = jνAν +
1

4µ0
FµνFµν + m2AµAµ (8.73)

which leads to the dynamic equation

∂µFµν − m2Aν = µ0 jν (8.74)

This equation describes an electromagnetic field with a mass, or, in other words,
massive photons. If massive photons would exist, large-scale magnetic fields,
including those of the earth and galactic spiral arms, would be significantly mod-
ified to yield measurable discrepancies from their usual form. Space experiments
of this kind on board satellites have led to stringent upper bounds on the photon
mass. If the photon really has a mass, it will have an impact on electrodynamics
as well as on cosmology and astrophysics.
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8.4 Example

BFIELD ENERGY DIFFERENCE EXPRESSED IN THE FIELD TENSOR EXAMPLE 8.1

Show, by explicit calculation, that

1
4µ0

FµνFµν =
1
2

(
B2

µ0
− ε0E2

)
(8.75)

i.e., the difference between the magnetic and electric field energy densities.

From formula (7.79) on page 148 we recall that

(Fµν) =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

 (8.76)

and from formula (7.81) on page 148 that

(
Fµν

)
=


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0

 (8.77)

where µ denotes the row number and ν the column number. Then, Einstein summation and
direct substitution yields

FµνFµν = F00F00 + F01F01 + F02F02 + F03F03

+ F10F10 + F11F11 + F12F12 + F13F13

+ F20F20 + F21F21 + F22F22 + F23F23

+ F30F30 + F31F31 + F32F32 + F33F33

= 0 − E2
x/c

2 − E2
y/c

2 − E2
z /c

2

− E2
x/c

2 + 0 + B2
z + B2

y

− E2
y/c

2 + B2
z + 0 + B2

x

− E2
z /c

2 + B2
y + B2

x + 0

= −2E2
x/c

2 − 2E2
y/c

2 − 2E2
z /c

2 + 2B2
x + 2B2

y + 2B2
z

= −2E2/c2 + 2B2 = 2(B2 − E2/c2)

(8.78)

or

1
4µ0

FµνFµν =
1
2

(
B2

µ0
−

1
c2µ0

E2

)
=

1
2

(
B2

µ0
− ε0E2

)
(8.79)

where, in the last step, the identity ε0µ0 = 1/c2 was used. QED �

C END OF EXAMPLE 8.1
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F
Formulæ

F.1 The electromagnetic field

F.1.1 Maxwell’s equations

∇ · D = ρ (F.1)

∇ · B = 0 (F.2)

∇ × E = −
∂

∂t
B (F.3)

∇ ×H = j +
∂

∂t
D (F.4)

Constitutive relations

D = εE (F.5)

H =
B
µ

(F.6)

j = σE (F.7)

P = ε0χE (F.8)

F.1.2 Fields and potentials
Vector and scalar potentials

B = ∇ × A (F.9)
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E = −∇φ −
∂

∂t
A (F.10)

The Lorenz-Lorentz gauge condition in vacuum

∇ · A +
1
c2

∂

∂t
φ = 0 (F.11)

F.1.3 Force and energy
Poynting’s vector

S = E ×H (F.12)

Maxwell’s stress tensor

Ti j = EiD j + HiB j −
1
2
δi j (EkDk + HkBk) (F.13)

F.2 Electromagnetic radiation

F.2.1 Relationship between the field vectors in a plane wave

B =
k̂ × E

c
(F.14)

F.2.2 The far fields from an extended source distribution

Brad
ω (x) =

−iµ0

4π
eik|x|

|x|

∫
V ′

d3x′ e−ik·x′ jω × k (F.15)

Erad
ω (x) =

i
4πε0c

eik|x|

|x|
x̂ ×

∫
V ′

d3x′ e−ik·x′ jω × k (F.16)

F.2.3 The far fields from an electric dipole

Brad
ω (x) = −

ωµ0

4π
eik|x|

|x|
pω × k (F.17)
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Erad
ω (x) = −

1
4πε0

eik|x|

|x|
(pω × k) × k (F.18)

F.2.4 The far fields from a magnetic dipole

Brad
ω (x) = −

µ0

4π
eik|x|

|x|
(mω × k) × k (F.19)

Erad
ω (x) =

k
4πε0c

eik|x|

|x|
mω × k (F.20)

F.2.5 The far fields from an electric quadrupole

Brad
ω (x) =

iµ0ω

8π
eik|x|

|x|
(k · Qω) × k (F.21)

Erad
ω (x) =

i
8πε0

eik|x|

|x|
[(k · Qω) × k] × k (F.22)

F.2.6 The fields from a point charge in arbitrary motion

E(t, x) =
q

4πε0s3

[
(x − x0)

(
1 −

v2

c2

)
+ (x − x′) ×

(x − x0) × v̇
c2

]
(F.23)

B(t, x) = (x − x′) ×
E(t, x)

c|x − x′|
(F.24)

s =
∣∣x − x′

∣∣ − (x − x′) ·
v
c

(F.25)

x − x0 = (x − x′) − |x − x′|
v
c

(F.26)(
∂t′

∂t

)
x
=
|x − x′|

s
(F.27)
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F.3 Special relativity

F.3.1 Metric tensor

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (F.28)

F.3.2 Covariant and contravariant four-vectors
vµ = gµνv

ν (F.29)

F.3.3 Lorentz transformation of a four-vector

x′µ = Λµνxν (F.30)

Λµν =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 (F.31)

γ =
1√

1 − β2
(F.32)

β =
v

c
(F.33)

F.3.4 Invariant line element

ds = c
dt
γ
= c dτ (F.34)

F.3.5 Four-velocity

uµ =
dx
dτ

µ

= γ(c, v) (F.35)
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F.3.6 Four-momentum

pµ = m0uµ =
(

E
c
, p
)

(F.36)

F.3.7 Four-current density
jµ = ρ0uµ (F.37)

F.3.8 Four-potential

Aµ =

(
φ

c
, A
)

(F.38)

F.3.9 Field tensor

Fµν = ∂µAν − ∂νAµ =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By
Ey/c Bz 0 −Bx

Ez/c −By Bx 0

 (F.39)

F.4 Vector relations
Let x be the radius vector (coordinate vector) from the origin to the point
(x1, x2, x3) ≡ (x, y, z) and let |x| denote the magnitude (‘length’) of x. Let fur-
ther α(x), β(x), . . . be arbitrary scalar fields and a(x),b(x), c(x),d(x), . . . arbitrary
vector fields.

The differential vector operator ∇ is in Cartesian coordinates given by

∇ ≡

3

∑
i=1

x̂i
∂

∂xi

def
≡ x̂i

∂

∂xi

def
≡ ∂ (F.40)

where x̂i, i = 1, 2, 3 is the ith unit vector and x̂1 ≡ x̂, x̂2 ≡ ŷ, and x̂3 ≡ ẑ. In
component (tensor) notation ∇ can be written

∇i = ∂i =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
=

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
(F.41)
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F.4.1 Spherical polar coordinates
Base vectors

r̂ = sin θ cosϕx̂1 + sin θ sinϕx̂2 + cos θx̂3 (F.42a)

θ̂ = cos θ cosϕx̂1 + cos θ sinϕx̂2 − sin θx̂3 (F.42b)

ϕ̂ = − sinϕx̂1 + cosϕx̂2 (F.42c)

x̂1 = sin θ cosϕr̂ + cos θ cosϕθ̂ − sinϕϕ̂ (F.43a)

x̂2 = sin θ sinϕr̂ + cos θ sinϕθ̂ + cosϕϕ̂ (F.43b)

x̂3 = cos θ r̂ − sin θθ̂ (F.43c)

Directed line element

dx x̂ = dl = dr r̂ + r dθ θ̂ + r sin θ dϕ ϕ̂ (F.44)

Solid angle element
dΩ = sin θ dθ dϕ (F.45)

Directed area element

d2x n̂ = dS = dS r̂ = r2dΩ r̂ (F.46)

Volume element

d3x = dV = dr dS = r2dr dΩ (F.47)

F.4.2 Vector formulae
General vector algebraic identities

a · b = b · a = δi jaib j = ab cos θ (F.48)

a × b = −b × a = εi jka jbk x̂i (F.49)

a · (b × c) = (a × b) · c (F.50)

a × (b × c) = b(a · c) − c(a · b) ≡ ba · c − ca · b (F.51)

a × (b × c) + b × (c × a) + c × (a × b) = 0 (F.52)

(a × b) · (c × d) = a · [b × (c × d)] = (a · c)(b · d) − (a · d)(b · c) (F.53)

(a × b) × (c × d) = (a × b · d)c − (a × b · c)d (F.54)
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General vector analytic identities

∇(αβ) = α∇β + β∇α (F.55)

∇ · (αa) = a · ∇α + α∇ · a (F.56)

∇ × (αa) = α∇ × a − a × ∇α (F.57)

∇ · (a × b) = b · (∇ × a) − a · (∇ × b) (F.58)

∇ × (a × b) = a(∇ · b) − b(∇ · a) + (b · ∇)a − (a · ∇)b (F.59)

∇(a · b) = a × (∇ × b) + b × (∇ × a) + (b · ∇)a + (a · ∇)b (F.60)

∇ · ∇α = ∇2α (F.61)

∇ × ∇α = 0 (F.62)

∇ · (∇ × a) = 0 (F.63)

∇ × (∇ × a) = ∇(∇ · a) − ∇2a ≡ ∇∇ · a − ∇2a (F.64)

Special identities
In the following x = xi x̂i and x′ = x′i x̂i are radius vectors, k an arbitrary constant
vector, a = a(x) an arbitrary vector field, ∇ ≡ ∂

∂xi
x̂i, and ∇′ ≡ ∂

∂x′i
x̂i.

∇ · x = 3 (F.65)

∇ × x = 0 (F.66)

∇(k · x) = k (F.67)

∇|x| =
x
|x|

(F.68)

∇
(
|x − x′|

)
=

x − x′

|x − x′|
= −∇′

(
|x − x′|

)
(F.69)

∇

(
1
|x|

)
= −

x
|x|3

(F.70)

∇

(
1

|x − x′|

)
= −

x − x′

|x − x′|3
= −∇′

(
1

|x − x′|

)
(F.71)

∇ ·

(
x
|x|3

)
= −∇2

(
1
|x|

)
= 4πδ(x) (F.72)

∇ ·

(
x − x′

|x − x′|3

)
= −∇2

(
1

|x − x′|

)
= 4πδ(x − x′) (F.73)

∇

(
k
|x|

)
= k ·

[
∇

(
1
|x|

)]
= −

k · x
|x|3

(F.74)

∇ ×

[
k ×

(
x
|x|3

)]
= −∇

(
k · x
|x|3

)
if |x| , 0 (F.75)
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∇2
(

k
|x|

)
= k∇2

(
1
|x|

)
= −4πkδ(x) (F.76)

∇ × (k × a) = k(∇ · a) + k × (∇ × a) − ∇(k · a) (F.77)

Integral relations
Let V(S ) be the volume bounded by the closed surface S (V). Denote the 3-
dimensional volume element by d3x(≡ dV) and the surface element, directed along
the outward pointing surface normal unit vector n̂, by dS(≡ d2x n̂). Then∫

V
(∇ · a) d3x =

∮
S

dS · a (F.78)∫
V

(∇α) d3x =
∮

S
dSα (F.79)∫

V
(∇ × a) d3x =

∮
S

dS × a (F.80)

If S (C) is an open surface bounded by the contour C(S ), whose line element
is dl, then∮

C
α dl =

∫
S

dS × ∇α (F.81)∮
C

a · dl =
∫

S
dS · (∇ × a) (F.82)

F.5 Bibliography
[1] G. B. ARFKEN AND H. J. WEBER, Mathematical Methods for Physicists, fourth, interna-

tional ed., Academic Press, Inc., San Diego, CA . . . , 1995, ISBN 0-12-059816-7.

[2] P. M. MORSE AND H. FESHBACH, Methods of Theoretical Physics, Part I. McGraw-Hill
Book Company, Inc., New York, NY . . . , 1953, ISBN 07-043316-8.

[3] W. K. H. PANOFSKY AND M. PHILLIPS, Classical Electricity and Magnetism, second ed.,
Addison-Wesley Publishing Company, Inc., Reading, MA . . . , 1962, ISBN 0-201-05702-
6.

178 Version released 16th January 2007 at 20:40. Downloaded from http://www.plasma.uu.se/CED/Book



Downloaded from http://www.plasma.uu.se/CED/Book Version released 16th January 2007 at 20:40.

M
Mathematical

Methods

M.1 Scalars, vectors and tensors
Every physical observable can be described by a geometric object. We will de-
scribe the observables in classical electrodynamics mathematically in terms of
scalars, pseudoscalars, vectors, pseudovectors, tensors or pseudotensors and will
not exploit differential forms to any significant degree.

A scalar describes a scalar quantity which may or may not be constant in time
and/or space. A vector describes some kind of physical motion due to vection
and a tensor describes the motion or deformation due to some form of tension.
However, generalisations to more abstract notions of these quantities are com-
monplace. The difference between a scalar, vector and tensor and a pseudoscalar,
pseudovector and a pseudotensor is that the latter behave differently under such
coordinate transformations which cannot be reduced to pure rotations.

Throughout we adopt the convention that Latin indices i, j, k, l, . . . run over
the range 1, 2, 3 to denote vector or tensor components in the real Euclidean three-
dimensional (3D) configuration space R3, and Greek indices µ, ν, κ, λ, . . . , which
are used in four-dimensional (4D) space, run over the range 0, 1, 2, 3.

M.1.1 Vectors
Radius vector
A vector can be represented mathematically in a number of different ways. One
suitable representation is in terms of an ordered N-tuple, or row vector, of the
coordinates xN where N is the dimensionality of the space under consideration.
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The most basic vector is the radius vector which is the vector from the origin to
the point of interest. Its N-tuple representation simply enumerates the coordinates
which describe this point. In this sense, the radius vector from the origin to a point
is synonymous with the coordinates of the point itself.

In the 3D Euclidean space R3, we have N = 3 and the radius vector can be
represented by the triplet (x1, x2, x3) of coordinates xi, i = 1, 2, 3. The coordinates
xi are scalar quantities which describe the position along the unit base vectors x̂i

which span R3. Therefore a representation of the radius vector in R3 is

x =
3

∑
i=1

xi x̂i
def
≡ xi x̂i (M.1)

where we have introduced Einstein’s summation convention (EΣ) which states
that a repeated index in a term implies summation over the range of the index
in question. Whenever possible and convenient we shall in the following always
assume EΣ and suppress explicit summation in our formulae. Typographically,
we represent a vector in 3D Euclidean space R3 by a boldface letter or symbol in
a Roman font.

Alternatively, we may describe the radius vector in component notation as
follows:

xi
def
≡ (x1, x2, x3) ≡ (x, y, z) (M.2)

This component notation is particularly useful in 4D space where we can rep-
resent the radius vector either in its contravariant component form

xµ
def
≡ (x0, x1, x2, x3) (M.3)

or its covariant component form

xµ
def
≡ (x0, x1, x2, x3) (M.4)

The relation between the covariant and contravariant forms is determined by the
metric tensor (also known as the fundamental tensor) whose actual form is dic-
tated by the properties of the vector space in question. The dual representation
of vectors in contravariant and covariant forms is most convenient when we work
in a non-Euclidean vector space with an indefinite metric. An example is Lorentz
space L4 which is a 4D Riemannian space utilised to formulate the special theory
of relativity.

We note that for a change of coordinates xµ → x′µ = x′µ(x0, x1, x2, x3), due
to a transformation from a system Σ to another system Σ′, the differential radius
vector dxµ transforms as

dx′µ =
∂x′µ

∂xν
dxν (M.5)
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which follows trivially from the rules of differentiation of x′µ considered as func-
tions of four variables xν.

M.1.2 Fields
A field is a physical entity which depends on one or more continuous parameters.
Such a parameter can be viewed as a ‘continuous index’ which enumerates the
‘coordinates’ of the field. In particular, in a field which depends on the usual
radius vector x of R3, each point in this space can be considered as one degree of
freedom so that a field is a representation of a physical entity which has an infinite
number of degrees of freedom.

Scalar fields

We denote an arbitrary scalar field in R3 by

α(x) = α(x1, x2, x3)
def
≡ α(xi) (M.6)

This field describes how the scalar quantity α varies continuously in 3D R3 space.
In 4D, a four-scalar field is denoted

α(x0, x1, x2, x3)
def
≡ α(xµ) (M.7)

which indicates that the four-scalar α depends on all four coordinates spanning
this space. Since a four-scalar has the same value at a given point regardless of
coordinate system, it is also called an invariant.

Analogous to the transformation rule, equation (M.5) on page 180, for the
differential dxµ, the transformation rule for the differential operator ∂/∂xµ under a
transformation xµ → x′µ becomes

∂

∂x′µ
=
∂xν

∂x′µ
∂

∂xν
(M.8)

which, again, follows trivially from the rules of differentiation.

Vector fields

We can represent an arbitrary vector field a(x) in R3 as follows:

a(x) = ai(x)x̂i (M.9)

In component notation this same vector can be represented as

ai(x) = (a1(x), a2(x), a3(x)) = ai(x j) (M.10)
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In 4D, an arbitrary four-vector field in contravariant component form can be
represented as

aµ(xν) = (a0(xν), a1(xν), a2(xν), a3(xν)) (M.11)

or, in covariant component form, as

aµ(xν) = (a0(xν), a1(xν), a2(xν), a3(xν)) (M.12)

where xν is the radius four-vector. Again, the relation between aµ and aµ is deter-
mined by the metric of the physical 4D system under consideration.

Whether an arbitrary N-tuple fulfils the requirement of being an (N-dimen-
sional) contravariant vector or not, depends on its transformation properties during
a change of coordinates. For instance, in 4D an assemblage yµ = (y0, y1, y2, y3)
constitutes a contravariant four-vector (or the contravariant components of a four-
vector) if and only if, during a transformation from a system Σ with coordinates
xµ to a system Σ′ with coordinates x′µ, it transforms to the new system according
to the rule

y′µ =
∂x′µ

∂xν
yν (M.13)

i.e., in the same way as the differential coordinate element dxµ transforms accord-
ing to equation (M.5) on page 180.

The analogous requirement for a covariant four-vector is that it transforms,
during the change from Σ to Σ′, according to the rule

y′µ =
∂xν

∂x′µ
yν (M.14)

i.e., in the same way as the differential operator ∂/∂xµ transforms according to
equation (M.8) on page 181.

Tensor fields

We denote an arbitrary tensor field in R3 by A(x). This tensor field can be repre-
sented in a number of ways, for instance in the following matrix form:

(
Ai j(xk)

) def
≡

A11(x) A12(x) A13(x)
A21(x) A22(x) A23(x)
A31(x) A32(x) A33(x)

 (M.15)

Strictly speaking, the tensor field described here is a tensor of rank two.
A particularly simple rank-two tensor in R3 is the 3D Kronecker delta symbol

δi j, with the following properties:

δi j =

{
0 if i , j
1 if i = j

(M.16)
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The 3D Kronecker delta has the following matrix representation

(δi j) =

1 0 0
0 1 0
0 0 1

 (M.17)

Another common and useful tensor is the fully antisymmetric tensor of rank 3,
also known as the Levi-Civita tensor

εi jk =


1 if i, j, k is an even permutation of 1,2,3
0 if at least two of i, j, k are equal
−1 if i, j, k is an odd permutation of 1,2,3

(M.18)

with the following further property

εi jkεilm = δ jlδkm − δ jmδkl (M.19)

In fact, tensors may have any rank n. In this picture a scalar is considered to
be a tensor of rank n = 0 and a vector a tensor of rank n = 1. Consequently, the
notation where a vector (tensor) is represented in its component form is called the
tensor notation. A tensor of rank n = 2 may be represented by a two-dimensional
array or matrix whereas higher rank tensors are best represented in their compo-
nent forms (tensor notation).

In 4D, we have three forms of four-tensor fields of rank n. We speak of

• a contravariant four-tensor field, denoted Aµ1µ2...µn (xν),

• a covariant four-tensor field, denoted Aµ1µ2...µn (xν),

• a mixed four-tensor field, denoted Aµ1µ2...µk
µk+1...µn (xν).

The 4D metric tensor (fundamental tensor) mentioned above is a particularly
important four-tensor of rank 2. In covariant component form we shall denote it
gµν. This metric tensor determines the relation between an arbitrary contravariant
four-vector aµ and its covariant counterpart aµ according to the following rule:

aµ(xκ)
def
≡ gµνaν(xκ) (M.20)

This rule is often called lowering of index. The raising of index analogue of the
index lowering rule is:

aµ(xκ)
def
≡ gµνaν(xκ) (M.21)

More generally, the following lowering and raising rules hold for arbitrary
rank n mixed tensor fields:

gµkνk Aν1ν2...νk−1νk
νk+1νk+2...νn

(xκ) = Aν1ν2...νk−1
µkνk+1...νn

(xκ) (M.22)
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gµkνk Aν1ν2...νk−1
νkνk+1...νn

(xκ) = Aν1ν2...νk−1µk
νk+1νk+2...νn

(xκ) (M.23)

Successive lowering and raising of more than one index is achieved by a repeated
application of this rule. For example, a dual application of the lowering operation
on a rank 2 tensor in contravariant form yields

Aµν = gµκgλνAκλ (M.24)

i.e., the same rank 2 tensor in covariant form. This operation is also known as a
tensor contraction.

M.1.3 Vector algebra
Scalar product
The scalar product (dot product, inner product) of two arbitrary 3D vectors a and
b in ordinary R3 space is the scalar number

a · b = ai x̂i · b j x̂ j = x̂i · x̂ jaib j = δi jaib j = aibi (M.25)

where we used the fact that the scalar product x̂i · x̂ j is a representation of the
Kronecker delta δi j defined in equation (M.16) on page 182. In Russian literature,
the 3D scalar product is often denoted (ab). The scalar product of a in R3 with
itself is

a · a
def
≡ (a)2 = |a|2 = (ai)2 = a2 (M.26)

and similarly for b. This allows us to write

a · b = ab cos θ (M.27)

where θ is the angle between a and b.
In 4D space we define the scalar product of two arbitrary four-vectors aµ and

bµ in the following way

aµbµ = gνµaνbµ = aνbν = gµνaµbν (M.28)

where we made use of the index lowering and raising rules (M.20) and (M.21).
The result is a four-scalar, i.e., an invariant which is independent of in which 4D
coordinate system it is measured.

The quadratic differential form

ds2 = gµνdxνdxµ = dxµdxµ (M.29)

i.e., the scalar product of the differential radius four-vector with itself, is an in-
variant called the metric. It is also the square of the line element ds which is the
distance between neighbouring points with coordinates xµ and xµ + dxµ.
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Dyadic product
The dyadic product field A(x) ≡ a(x)b(x) with two juxtaposed vector fields a(x)
and b(x) is the outer product of a and b. Operating on this dyad from the right
and from the left with an inner product of an vector c one obtains

A · c
def
≡ ab · c

def
≡ a(b · c) (M.30a)

c · A
def
≡ c · ab

def
≡ (c · a)b (M.30b)

i.e., new vectors, proportional to a and b, respectively. In mathematics, a dyadic
product is often called tensor product and is frequently denoted a ⊗ b.

In matrix notation the outer product of a and b is written

(
ab
)
=
(

x̂1 x̂2 x̂3
)a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

x̂1

x̂2

x̂3

 (M.31)

which means that we can represent the tensor A(x) in matrix form as

(
Ai j(xk)

)
=

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

 (M.32)

which we identify with expression (M.15) on page 182, viz. a tensor in matrix
notation.

Vector product
The vector product or cross product of two arbitrary 3D vectors a and b in ordi-
nary R3 space is the vector

c = a × b = εi jka jbk x̂i (M.33)

Here εi jk is the Levi-Civita tensor defined in equation (M.18) on page 183. Some-
times the 3D vector product of a and b is denoted a ∧ b or, particularly in the
Russian literature, [ab]. Alternatively,

a × b = ab sin θ ê (M.34)

where θ is the angle between a and b and ê is a unit vector perpendicular to the
plane spanned by a and b.

A spatial reversal of the coordinate system (x′1, x
′
2, x
′
3) = (−x1,−x2,−x3) changes

sign of the components of the vectors a and b so that in the new coordinate system
a′ = −a and b′ = −b, which is to say that the direction of an ordinary vector is not
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dependent on the choice of directions of the coordinate axes. On the other hand,
as is seen from equation (M.33) on page 185, the cross product vector c does not
change sign. Therefore a (or b) is an example of a ‘true’ vector, or polar vector,
whereas c is an example of an axial vector, or pseudovector.

A prototype for a pseudovector is the angular momentum vector L = x × p
and hence the attribute ‘axial’. Pseudovectors transform as ordinary vectors under
translations and proper rotations, but reverse their sign relative to ordinary vectors
for any coordinate change involving reflection. Tensors (of any rank) which trans-
form analogously to pseudovectors are called pseudotensors. Scalars are tensors
of rank zero, and zero-rank pseudotensors are therefore also called pseudoscalars,
an example being the pseudoscalar x̂i · (x̂ j × x̂k). This triple product is a repre-
sentation of the i jk component of the Levi-Civita tensor εi jk which is a rank three
pseudotensor.

M.1.4 Vector analysis
The del operator

In R3 the del operator is a differential vector operator, denoted in Gibbs’ notation
by ∇ and defined as

∇
def
≡ x̂i

∂

∂xi

def
≡ ∂ (M.35)

where x̂i is the ith unit vector in a Cartesian coordinate system. Since the op-
erator in itself has vectorial properties, we denote it with a boldface nabla. In
‘component’ notation we can write

∂i =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
(M.36)

In 4D, the contravariant component representation of the four-del operator is
defined by

∂µ =

(
∂

∂x0
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
(M.37)

whereas the covariant four-del operator is

∂µ =

(
∂

∂x0 ,
∂

∂x1 ,
∂

∂x2 ,
∂

∂x3

)
(M.38)

We can use this four-del operator to express the transformation properties
(M.13) and (M.14) on page 182 as

y′µ =
(
∂νx′µ

)
yν (M.39)
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and

y′µ =
(
∂′µxν

)
yν (M.40)

respectively.
With the help of the del operator we can define the gradient, divergence and

curl of a tensor (in the generalised sense).

The gradient

The gradient of an R3 scalar field α(x), denoted ∇α(x), is an R3 vector field a(x):

∇α(x) = ∂α(x) = x̂i∂iα(x) = a(x) (M.41)

From this we see that the boldface notation for the nabla and del operators is very
handy as it elucidates the 3D vectorial property of the gradient.

In 4D, the four-gradient is a covariant vector, formed as a derivative of a four-
scalar field α(xµ), with the following component form:

∂µα(xν) =
∂α(xν)
∂xµ

(M.42)

The divergence

We define the 3D divergence of a vector field in R3 as

∇ · a(x) = ∂ · x̂ ja j(x) = δi j∂ia j(x) = ∂iai(x) =
∂ai(x)
∂xi

= α(x) (M.43)

which, as indicated by the notation α(x), is a scalar field in R3. We may think of
the divergence as a scalar product between a vectorial operator and a vector. As
is the case for any scalar product, the result of a divergence operation is a scalar.
Again we see that the boldface notation for the 3D del operator is very convenient.

The four-divergence of a four-vector aµ is the following four-scalar:

∂µaµ(xν) = ∂µaµ(xν) =
∂aµ(xν)
∂xµ

(M.44)

The Laplacian
The 3D Laplace operator or Laplacian can be described as the divergence of the
gradient operator:

∇2 = ∆ = ∇ · ∇ =
∂

∂xi
x̂i · x̂ j

∂

∂x j
= δi j∂i∂ j = ∂

2
i =

∂2

∂x2
i
≡

3

∑
i=1

∂2

∂x2
i

(M.45)

The symbol ∇2 is sometimes read del squared. If, for a scalar field α(x), ∇2α < 0
at some point in 3D space, it is a sign of concentration of α at that point.
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The curl

In R3 the curl of a vector field a(x), denoted ∇ × a(x), is another R3 vector field
b(x) which can be defined in the following way:

∇ × a(x) = εi jk x̂i∂ jak(x) = εi jk x̂i
∂ak(x)
∂x j

= b(x) (M.46)

where use was made of the Levi-Civita tensor, introduced in equation (M.18) on
page 183.

The covariant 4D generalisation of the curl of a four-vector field aµ(xν) is the
antisymmetric four-tensor field

Gµν(xκ) = ∂µaν(xκ) − ∂νaµ(xκ) = −Gνµ(xκ) (M.47)

A vector with vanishing curl is said to be irrotational.
Numerous vector algebra and vector analysis formulae are given in chapter F.

Those which are not found there can often be easily derived by using the compo-
nent forms of the vectors and tensors, together with the Kronecker and Levi-Civita
tensors and their generalisations to higher ranks. A short but very useful reference
in this respect is the article by A. Evett [3].

M.2 Analytical mechanics

M.2.1 Lagrange’s equations
As is well known from elementary analytical mechanics, the Lagrange function
or Lagrangian L is given by

L(qi, q̇i, t) = L
(

qi,
dqi

dt
, t
)
= T − V (M.48)

where qi is the generalised coordinate, T the kinetic energy and V the potential
energy of a mechanical system, Using the action

S =
∫ t2

t1
dt L(qi, q̇i, t) (M.49)

and the variational principle with fixed endpoints t1 and t2,

δS = 0 (M.50)

one finds that the Lagrangian satisfies the Euler-Lagrange equations

d
dt

(
∂L
∂q̇i

)
−
∂L
∂qi
= 0 (M.51)
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To the generalised coordinate qi one defines a canonically conjugate momen-
tum pi according to

pi =
∂L
∂q̇i

(M.52)

and note from equation (M.51) on page 188 that

∂L
∂qi
= ṗi (M.53)

M.2.2 Hamilton’s equations
From L, the Hamiltonian (Hamilton function) H can be defined via the Legendre
transformation

H(pi, qi, t) = piq̇i − L(qi, q̇i, t) (M.54)

After differentiating the left and right hand sides of this definition and setting them
equal we obtain

∂H
∂pi

dpi +
∂H
∂qi

dqi +
∂H
∂t

dt = q̇idpi + pidq̇i −
∂L
∂qi

dqi −
∂L
∂q̇i

dq̇i −
∂L
∂t

dt

(M.55)

According to the definition of pi, equation (M.52) above, the second and fourth
terms on the right hand side cancel. Furthermore, noting that according to equa-
tion (M.53) the third term on the right hand side of equation (M.55) above is equal
to −ṗidqi and identifying terms, we obtain the Hamilton equations:

∂H
∂pi
= q̇i =

dqi

dt
(M.56a)

∂H
∂qi
= − ṗi = −

dpi

dt
(M.56b)
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M.3 Examples

BTENSORS IN 3D SPACEEXAMPLE M.1

x1

d2x

n̂

x3

x2

V

FIGURE M.1: Tetrahedron-like volume element V containing matter.

Consider a tetrahedron-like volume element V of a solid, fluid, or gaseous body, whose
atomistic structure is irrelevant for the present analysis; figure M.1 indicates how this volume
may look like. Let dS = d2x n̂ be the directed surface element of this volume element and let
the vector Tn̂ d2x be the force that matter, lying on the side of d2x toward which the unit normal
vector n̂ points, acts on matter which lies on the opposite side of d2x. This force concept is
meaningful only if the forces are short-range enough that they can be assumed to act only in the
surface proper. According to Newton’s third law, this surface force fulfils

T−n̂ = − Tn̂ (M.57)

Using (M.57) and Newton’s second law, we find that the matter of mass m, which at a given
instant is located in V obeys the equation of motion

Tn̂ d2x − cos θ1Tx̂1 d2x − cos θ2Tx̂2 d2x − cos θ3Tx̂3 d2x + Fext = ma (M.58)

190 Version released 16th January 2007 at 20:40. Downloaded from http://www.plasma.uu.se/CED/Book



Examples

where Fext is the external force and a is the acceleration of the volume element. In other words

Tn̂ = n1Tx̂1 + n2Tx̂2 + n3Tx̂3 +
m
d2x

(
a −

Fext

m

)
(M.59)

Since both a and Fext/m remain finite whereas m/d2x→ 0 as V → 0, one finds that in this limit

Tn̂ =
3

∑
i=1

niTx̂i ≡ niTx̂i (M.60)

From the above derivation it is clear that equation (M.60) above is valid not only in equilibrium
but also when the matter in V is in motion.

Introducing the notation

Ti j =
(
Tx̂i

)
j (M.61)

for the jth component of the vector Tx̂i , we can write equation (M.60) in component form as
follows

T n̂ j = (Tn̂) j =
3

∑
i=1

niTi j ≡ niTi j (M.62)

Using equation (M.62) above, we find that the component of the vector Tn̂ in the direction of
an arbitrary unit vector m̂ is

T n̂m̂ = Tn̂ · m̂

=
3

∑
j=1

T n̂ jm j =
3

∑
j=1

(
3

∑
i=1

niTi j

)
m j ≡ niTi jm j = n̂ · T · m̂

(M.63)

Hence, the jth component of the vector Tx̂i , here denoted Ti j, can be interpreted as the i jth
component of a tensor T. Note that T n̂m̂ is independent of the particular coordinate system used
in the derivation.

We shall now show how one can use the momentum law (force equation) to derive the
equation of motion for an arbitrary element of mass in the body. To this end we consider a
part V of the body. If the external force density (force per unit volume) is denoted by f and the
velocity for a mass element dm is denoted by v, we obtain

d
dt

∫
V

v dm =
∫

V
f d3x +

∫
S

Tn̂ d2x (M.64)

The jth component of this equation can be written∫
V

d
dt
v j dm =

∫
V

f j d3x +
∫

S
T n̂ j d2x =

∫
V

f j d3x +
∫

S
niTi j d2x (M.65)

where, in the last step, equation (M.62) was used. Setting dm = ρ d3x and using the divergence
theorem on the last term, we can rewrite the result as∫

V
ρ

d
dt
v j d3x =

∫
V

f j d3x +
∫

V

∂Ti j

∂xi
d3x (M.66)

Since this formula is valid for any arbitrary volume, we must require that
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ρ
d
dt
v j − f j −

∂Ti j

∂xi
= 0 (M.67)

or, equivalently

ρ
∂v j

∂t
+ ρv · ∇v j − f j −

∂Ti j

∂xi
= 0 (M.68)

Note that ∂v j/∂t is the rate of change with time of the velocity component v j at a fixed point
x = (x1, x1, x3).

C END OF EXAMPLE M.1

BCONTRAVARIANT AND COVARIANT VECTORS IN FLAT LORENTZ SPACEEXAMPLE M.2

The 4D Lorentz space L4 has a simple metric which can be described either by the metric
tensor

gµν =


1 if µ = ν = 0
−1 if µ = ν = i = j = 1, 2, 3
0 if µ , ν

(M.69)

which, in matrix notation, is represented as

(gµν) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (M.70)

i.e., a matrix with a main diagonal that has the sign sequence, or signature, {+,−,−,−} or

gµν =


−1 if µ = ν = 0
1 if µ = ν = i = j = 1, 2, 3
0 if µ , ν

(M.71)

which, in matrix notation, is represented as

(gµν) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (M.72)

i.e., a matrix with signature {−,+,+,+}.

Consider an arbitrary contravariant four-vector aν in this space. In component form it can
be written:

aν
def
≡ (a0, a1, a2, a3) = (a0, a) (M.73)

According to the index lowering rule, equation (M.20) on page 183, we obtain the covariant
version of this vector as

aµ
def
≡ (a0, a1, a2, a3) = gµνaν (M.74)
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In the {+,−,−,−} metric we obtain

µ = 0 : a0 = 1 · a0 + 0 · a1 + 0 · a2 + 0 · a3 = a0 (M.75)

µ = 1 : a1 = 0 · a0 − 1 · a1 + 0 · a2 + 0 · a3 = −a1 (M.76)

µ = 2 : a2 = 0 · a0 + 0 · a1 − 1 · a2 + 0 · a3 = −a2 (M.77)

µ = 3 : a3 = 0 · a0 + 0 · a1 + 0 · a2 + 1 · a3 = −a3 (M.78)

or

aµ = (a0, a1, a2, a3) = (a0,−a1,−a2,−a3) = (a0,−a) (M.79)

Radius 4-vector itself in L4 and in this metric is given by

xµ = (x0, x1, x2, x3) = (x0, x, y, z) = (x0, x)

xµ = (x0, x1, x2, x3) = (x0,−x1,−x2,−x3) = (x0,−x)
(M.80)

where x0 = ct.

Analogously, using the {−,+,+,+} metric we obtain

aµ = (a0, a1, a2, a3) = (−a0, a1, a2, a3) = (−a0, a) (M.81)

C END OF EXAMPLE M.2

BINNER PRODUCTS IN COMPLEX VECTOR SPACE EXAMPLE M.3

A 3D complex vector A is a vector in C3 (or, if we like, in R6), expressed in terms of two
real vectors aR and aI in R3 in the following way

A
def
≡ aR + iaI = aR âR + iaI âI

def
≡ AÂ ∈ C3 (M.82)

The inner product of A with itself may be defined as

A2 def
≡ A · A = a2

R − a2
I + 2iaR · aI

def
≡ A2 ∈ C (M.83)

from which we find that

A =
√

a2
R − a2

I + 2iaR · aI ∈ C (M.84)

Using this in equation (M.82), we see that we can interpret this so that the complex unit vector
is

Â =
A
A
=

aR√
a2

R − a2
I + 2iaR · aI

âR + i
aI√

a2
R − a2

I + 2iaR · aI
âI

=
aR

√
a2

R − a2
I − 2iaR · aI

a2
R + a2

I
âR + i

aI

√
a2

R − a2
I − 2iaR · aI

a2
R + a2

I
âI ∈ C3

(M.85)

On the other hand, the definition of the scalar product in terms of the inner product of complex
vector with its own complex conjugate yields

|A|2
def
≡ A · A∗ = a2

R + a2
I = |A|

2 (M.86)
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with the help of which we can define the unit vector as

Â =
A
|A|
=

aR√
a2

R + a2
I

âR + i
aI√

a2
R + a2

I

âI

=
aR

√
a2

R + a2
I

a2
R + a2

I
âR + i

aI

√
a2

R + a2
I

a2
R + a2

I
âI ∈ C3

(M.87)

C END OF EXAMPLE M.3

BSCALAR PRODUCT, NORM AND METRIC IN LORENTZ SPACEEXAMPLE M.4

In L4 the metric tensor attains a simple form [see example M.2 on page 192] and, hence,
the scalar product in equation (M.28) on page 184 can be evaluated almost trivially. For the
{+,−,−,−} signature it becomes

aµbµ = (a0,−a) · (b0,b) = a0b0 − a · b (M.88)

The important scalar product of the L4 radius four-vector with itself becomes

xµxµ = (x0,−x) · (x0, x) = (ct,−x) · (ct, x)

= (ct)2 − (x1)2 − (x2)2 − (x3)2 = s2 (M.89)

which is the indefinite, real norm of L4. The L4 metric is the quadratic differential form

ds2 = dxµdxµ = c2(dt)2 − (dx1)2 − (dx2)2 − (dx3)2 (M.90)

C END OF EXAMPLE M.4

BTHE FOUR-DEL OPERATOR IN LORENTZ SPACEEXAMPLE M.5

In L4 the contravariant form of the four-del operator can be represented as

∂µ =

(
1
c
∂

∂t
,−∂

)
=

(
1
c
∂

∂t
,−∇

)
(M.91)

and the covariant form as

∂µ =

(
1
c
∂

∂t
,∂

)
=

(
1
c
∂

∂t
,∇

)
(M.92)

Taking the scalar product of these two, one obtains

∂µ∂µ =
1
c2

∂2

∂t2 − ∇
2 = �2 (M.93)

which is the d’Alembert operator, sometimes denoted �, and sometimes defined with an oppo-
site sign convention.

C END OF EXAMPLE M.5
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BGRADIENTS OF SCALAR FUNCTIONS OF RELATIVE DISTANCES IN 3D EXAMPLE M.6

Very often electrodynamic quantities are dependent on the relative distance in R3 between
two vectors x and x′, i.e., on |x − x′|. In analogy with equation (M.35) on page 186, we can
define the primed del operator in the following way:

∇
′ = x̂i

∂

∂x′i
= ∂′ (M.94)

Using this, the unprimed version, equation (M.35) on page 186, and elementary rules of differ-
entiation, we obtain the following two very useful results:

∇ (|x − x′|) = x̂i
∂|x − x′|
∂xi

=
x − x′

|x − x′|
= − x̂i

∂|x − x′|
∂x′i

= − ∇′ (|x − x′|)
(M.95)

and

∇

(
1

|x − x′|

)
= −

x − x′

|x − x′|3
= − ∇′

(
1

|x − x′|

)
(M.96)

C END OF EXAMPLE M.6

BDIVERGENCE IN 3D EXAMPLE M.7

For an arbitrary R3 vector field a(x′), the following relation holds:

∇
′ ·

(
a(x′)
|x − x′|

)
=
∇′ · a(x′)
|x − x′|

+ a(x′) · ∇′
(

1
|x − x′|

)
(M.97)

which demonstrates how the primed divergence, defined in terms of the primed del operator in
equation (M.94) above, works.

C END OF EXAMPLE M.7

BTHE LAPLACIAN AND THE DIRAC DELTA EXAMPLE M.8

A very useful formula in 3D R3 is

∇ · ∇

(
1

|x − x′|

)
= ∇2

(
1

|x − x′|

)
= − 4πδ(x − x′) (M.98)

where δ(x − x′) is the 3D Dirac delta ‘function’. This formula follows directly from the fact
that ∫

V
d3x∇ · ∇

(
1

|x − x′|

)
=

∫
V

d3x∇ ·
(
−

x − x′

|x − x′|3

)
=

∮
S
d2x n̂ ·

(
−

x − x′

|x − x′|3

)
(M.99)

equals −4π if the integration volume V(S ), enclosed by the surface S (V), includes x = x′, and
equals 0 otherwise.

C END OF EXAMPLE M.8
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BTHE CURL OF A GRADIENTEXAMPLE M.9

Using the definition of the R3 curl, equation (M.46) on page 188, and the gradient, equa-
tion (M.41) on page 187, we see that

∇ × [∇α(x)] = εi jk x̂i∂ j∂kα(x) (M.100)

which, due to the assumed well-behavedness of α(x), vanishes:

εi jk x̂i∂ j∂kα(x) = εi jk
∂

∂x j

∂

∂xk
α(x)x̂i

=

(
∂2

∂x2∂x3
−

∂2

∂x3∂x2

)
α(x)x̂1

+

(
∂2

∂x3∂x1
−

∂2

∂x1∂x3

)
α(x)x̂2

+

(
∂2

∂x1∂x2
−

∂2

∂x2∂x1

)
α(x)x̂3

≡ 0

(M.101)

We thus find that

∇ × [∇α(x)] ≡ 0 (M.102)

for any arbitrary, well-behaved R3 scalar field α(x).

In 4D we note that for any well-behaved four-scalar field α(xκ)

(∂µ∂ν − ∂ν∂µ)α(xκ) ≡ 0 (M.103)

so that the four-curl of a four-gradient vanishes just as does a curl of a gradient in R3.

Hence, a gradient is always irrotational.

C END OF EXAMPLE M.9

BTHE DIVERGENCE OF A CURLEXAMPLE M.10
With the use of the definitions of the divergence (M.43) and the curl, equation (M.46) on

page 188, we find that

∇ · [∇ × a(x)] = ∂i[∇ × a(x)]i = εi jk∂i∂ jak(x) (M.104)

Using the definition for the Levi-Civita symbol, defined by equation (M.18) on page 183, we
find that, due to the assumed well-behavedness of a(x),

∂iεi jk∂ jak(x) =
∂

∂xi
εi jk

∂

∂x j
ak

=

(
∂2

∂x2∂x3
−

∂2

∂x3∂x2

)
a1(x)

+

(
∂2

∂x3∂x1
−

∂2

∂x1∂x3

)
a2(x)

+

(
∂2

∂x1∂x2
−

∂2

∂x2∂x1

)
a3(x)

≡ 0

(M.105)
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i.e., that

∇ · [∇ × a(x)] ≡ 0 (M.106)

for any arbitrary, well-behaved R3 vector field a(x).

In 4D, the four-divergence of the four-curl is not zero, for

∂νGµν = ∂
µ∂νaν(xκ) −�2aµ(xκ) , 0 (M.107)

C END OF EXAMPLE M.10
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acceleration field, 100
advanced time, 46
Ampère’s law, 6
Ampère-turn density, 57
anisotropic, 116
anomalous dispersion, 117
antisymmetric tensor, 147
associated Legendre polynomial, 87
associative, 138
axial gauge, 49
axial vector, 147, 185

Bessel functions, 84
Biot-Savart’s law, 8
birefringent, 116
braking radiation, 107
bremsstrahlung, 107, 113

canonically conjugate four-momentum, 156
canonically conjugate momentum, 156, 188
canonically conjugate momentum density,

163
Cerenkov radiation, 118
characteristic impedance, 29
classical electrodynamics, 1, 9
closed algebraic structure, 138
coherent radiation, 112
collisional interaction, 116
complex field six-vector, 22
complex notation, 33
complex vector, 193
component notation, 180
concentration, 187
conservative field, 12
conservative forces, 160
constitutive relations, 15
contravariant component form, 134, 180
contravariant field tensor, 147
contravariant four-tensor field, 183

contravariant four-vector, 182
contravariant four-vector field, 137
contravariant vector, 134
convection potential, 127
convective derivative, 13
cosine integral, 81
Coulomb gauge, 47
Coulomb’s law, 2
covariant, 132
covariant component form, 180
covariant field tensor, 148
covariant four-tensor field, 183
covariant four-vector, 182
covariant four-vector field, 137
covariant vector, 134
cross product, 185
curl, 187
cutoff, 129
cyclotron radiation, 109, 113

d’Alembert operator, 26, 43, 143, 194
del operator, 186
del squared, 187
differential distance, 136
differential vector operator, 186
dipole antennas, 78
Dirac delta, 195
Dirac’s symmetrised Maxwell equations, 16
dispersive, 117
displacement current, 11
divergence, 187
dot product, 184
dual electromagnetic tensor, 149
dual vector, 134
duality transformation, 17, 149
dummy index, 134
dyadic product, 184
dyons, 17
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E1 radiation, 90
E2 radiation, 92
Einstein’s summation convention, 180
electric charge conservation law, 10
electric charge density, 4
electric conductivity, 11
electric current density, 8
electric dipole moment, 89
electric dipole moment vector, 54
electric dipole radiation, 90
electric displacement, 15
electric displacement current, 21
electric displacement vector, 53, 55
electric field, 3
electric field energy, 59
electric monopole moment, 53
electric permittivity, 116
electric polarisation, 54
electric quadrupole moment tensor, 54
electric quadrupole radiation, 92
electric quadrupole tensor, 92
electric susceptibility, 55
electric volume force, 60
electricity, 2
electrodynamic potentials, 40
electromagnetic field tensor, 147
electromagnetic scalar potential, 41
electromagnetic vector potential, 40
electromagnetism, 1
electromagnetodynamic equations, 16
electromagnetodynamics, 17
electromotive force (EMF), 12
electrostatic scalar potential, 39
electrostatics, 2
electroweak theory, 1
energy theorem in Maxwell’s theory, 59
equation of continuity, 10, 144
equations of classical electrostatics, 9
equations of classical magnetostatics, 9
Euclidean space, 139
Euclidean vector space, 135
Euler-Lagrange equation, 162
Euler-Lagrange equations, 163, 188
Euler-Mascheroni constant, 81
event, 138

far field, 68

far zone, 71
Faraday’s law, 12
field, 181
field Lagrange density, 164
field point, 4
field quantum, 129
fine structure constant, 114, 129
four-current, 143
four-del operator, 186
four-dimensional Hamilton equations, 156
four-dimensional vector space, 134
four-divergence, 187
four-gradient, 187
four-Hamiltonian, 156
four-Lagrangian, 154
four-momentum, 142
four-potential, 143
four-scalar, 181
four-tensor fields, 183
four-vector, 137, 181
four-velocity, 141
Fourier integral, 28
Fourier series, 27
Fourier transform, 28, 44
free-free radiation, 107
functional derivative, 162
fundamental tensor, 134, 180, 183

Galileo’s law, 131
gauge fixing, 49
gauge function, 42
gauge invariant, 42
gauge transformation, 42
Gauss’s law of electrostatics, 5
general inhomogeneous wave equations, 42
generalised coordinate, 156, 188
generalised four-coordinate, 156
Gibbs’ notation, 186
gradient, 187
Green function, 44, 86
group theory, 138
group velocity, 117

Hamilton density, 163
Hamilton density equations, 163
Hamilton equations, 156, 189
Hamilton function, 189
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Hamilton gauge, 49
Hamiltonian, 189
Heaviside potential, 127
Helmholtz’ theorem, 43
help vector, 86
Hertz’ method, 85
Hertz’ vector, 85
Hodge star operator, 17
homogeneous wave equation, 26
Hooke’s law, 160
Huygen’s principle, 44

identity element, 138
in a medium, 119
incoherent radiation, 112
indefinite norm, 135
index contraction, 134
index lowering, 134
induction field, 68
inertial reference frame, 131
inertial system, 131
inhomogeneous Helmholtz equation, 44
inhomogeneous time-independent wave equa-

tion, 44
inhomogeneous wave equation, 43
inner product, 184
instantaneous, 104
interaction Lagrange density, 164
intermediate field, 71
invariant, 181
invariant line element, 136
inverse element, 138
inverse Fourier transform, 28
irrotational, 6, 188

Jacobi identity, 150

Kelvin function, 114
kinetic energy, 160, 188
kinetic momentum, 159
Kronecker delta, 182

Lagrange density, 161
Lagrange function, 160, 188
Lagrangian, 160, 188
Laplace operator, 187
Laplacian, 187
Larmor formula for radiated power, 104

law of inertia, 131
Legendre polynomial, 86
Legendre transformation, 189
Levi-Civita tensor, 183
Liénard-Wiechert potentials, 95, 126, 146
light cone, 137
light-like interval, 137
line element, 184
linear mass density, 161
longitudinal component, 30
Lorentz boost parameter, 141
Lorentz force, 14, 59, 126
Lorentz gauge condition, 43
Lorentz space, 135, 180
Lorentz transformation, 126, 133
Lorenz-Lorentz gauge, 47
Lorenz-Lorentz gauge condition, 43, 144
lowering of index, 183

M1 radiation, 92
Møller scattering, 115
Mach cone, 120
macroscopic Maxwell equations, 116
magnetic charge density, 16
magnetic current density, 16
magnetic dipole moment, 56, 91
magnetic dipole radiation, 92
magnetic displacement current, 21
magnetic field, 7
magnetic field energy, 59
magnetic field intensity, 57
magnetic flux, 12
magnetic flux density, 8
magnetic four-current, 150
magnetic induction, 8
magnetic monopole equation of continuity,

17
magnetic monopoles, 16
magnetic permeability, 116
magnetic susceptibility, 57
magnetisation, 57
magnetisation currents, 56
magnetising field, 15, 53, 57
magnetostatic vector potential, 40
magnetostatics, 6
massive photons, 167
mathematical group, 138
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matrix form, 182
Maxwell stress tensor, 61
Maxwell’s macroscopic equations, 16, 58
Maxwell’s microscopic equations, 15
Maxwell-Lorentz equations, 15
mechanical Lagrange density, 164
metric, 180, 184
metric tensor, 134, 180, 183
Minkowski equation, 156
Minkowski space, 139
mixed four-tensor field, 183
mixing angle, 17
momentum theorem in Maxwell’s theory,

61
monochromatic, 65
multipole expansion, 85, 88

near zone, 71
Newton’s first law, 131
Newton-Lorentz force equation, 156
non-Euclidean space, 135
non-linear effects, 11
norm, 134, 194
null vector, 137

observation point, 4
Ohm’s law, 11
one-dimensional wave equation, 31
outer product, 184

Parseval’s identity, 75, 114, 128
phase velocity, 116
photon, 129
physical measurable, 33
plane wave, 31
plasma, 117
plasma frequency, 118
Poincaré gauge, 49
Poisson equation, 126
Poisson’s equation, 39
polar vector, 147, 185
polarisation charges, 55
polarisation currents, 56
polarisation potential, 85
polarisation vector, 85
positive definite, 139
positive definite norm, 135
potential energy, 160, 188

potential theory, 86
power flux, 59
Poynting vector, 59
Poynting’s theorem, 59
Proca Lagrangian, 166
propagator, 44
proper time, 137
pseudo-Riemannian space, 139
pseudoscalar, 179
pseudoscalars, 186
pseudotensor, 179
pseudotensors, 186
pseudovector, 147, 179, 185

quadratic differential form, 136, 184
quantum chromodynamics, 1
quantum electrodynamics, 1, 47
quantum mechanical nonlinearity, 4

radial gauge, 49
radiation field, 68, 71, 100
radiation fields, 71
radiation resistance, 80
radius four-vector, 134
radius vector, 179
raising of index, 183
rank, 182
rapidity, 141
refractive index, 116
relative electric permittivity, 61
relative magnetic permeability, 61
relative permeability, 116
relative permittivity, 116
Relativity principle, 132
relaxation time, 28
rest mass density, 164
retarded Coulomb field, 71
retarded potentials, 46
retarded relative distance, 95
retarded time, 46
Riemann-Silberstein vector, 22
Riemannian metric, 136
Riemannian space, 134, 180
row vector, 179

scalar, 179, 187
scalar field, 138, 181
scalar product, 184
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shock front, 120
signature, 135, 192
simultaneous coordinate, 124
skew-symmetric, 147
skin depth, 33
source point, 4
space components, 135
space-like interval, 137
space-time, 135
special theory of relativity, 131
spherical Bessel function of the first kind,

86
spherical Hankel function of the first kind,

86
spherical waves, 74
standard configuration, 132
standing wave, 78
super-potential, 85
synchrotron radiation, 109, 113
synchrotron radiation lobe width, 110

telegrapher’s equation, 31, 116
temporal dispersive media, 11
temporal gauge, 49
tensor, 179
tensor contraction, 184
tensor field, 182
tensor notation, 183
tensor product, 185
three-dimensional functional derivative, 163
time component, 135
time-dependent Poisson’s equation, 47
time-harmonic wave, 27
time-independent diffusion equation, 29
time-independent telegrapher’s equation, 31
time-independent wave equation, 29
time-like interval, 137
total charge, 53
transverse components, 30
transverse gauge, 48

uncoupled inhomogeneous wave equations,
43

vacuum permeability, 6
vacuum permittivity, 2
vacuum polarisation effects, 4
vacuum wave number, 29

variational principle, 188
Vavilov-Čerenkov cone, 120
Vavilov-Čerenkov radiation, 118, 120
vector, 179
vector product, 185
velocity field, 100
velocity gauge condition, 48
virtual simultaneous coordinate, 95, 100

wave equations, 25
wave vector, 31, 117
world line, 138

Young’s modulus, 161
Yukawa meson field, 166

Downloaded from http://www.plasma.uu.se/CED/Book Version released 16th January 2007 at 20:40. 203


	Contents
	List of Figures
	Preface
	Classical Electrodynamics
	Electrostatics
	Coulomb's law
	The electrostatic field
	Magnetostatics
	Ampère's law
	The magnetostatic field
	Electrodynamics
	Equation of continuity for electric charge
	Maxwell's displacement current
	Electromotive force
	Faraday's law of induction
	Maxwell's microscopic equations
	Maxwell's macroscopic equations
	Electromagnetic duality
	Bibliography
	Examples
	Electromagnetic Waves
	The wave equations
	The wave equation for E
	The wave equation for B
	The time-independent wave equation for E
	Plane waves
	Telegrapher's equation
	Waves in conductive media
	Observables and averages
	Bibliography
	Example
	Electromagnetic Potentials
	The electrostatic scalar potential
	The magnetostatic vector potential
	The electrodynamic potentials
	Gauge transformations
	Gauge conditions
	Lorenz-Lorentz gauge
	Coulomb gauge
	Velocity gauge
	Bibliography
	Examples
	Electromagnetic Fields and Matter
	Electric polarisation and displacement
	Electric multipole moments
	Magnetisation and the magnetising field
	Energy and momentum
	The energy theorem in Maxwell's theory
	The momentum theorem in Maxwell's theory
	Bibliography
	Example
	Electromagnetic Fields from Arbitrary Source Distributions
	The magnetic field
	The electric field
	The radiation fields
	Radiated energy
	Monochromatic signals
	Finite bandwidth signals
	Bibliography
	Electromagnetic Radiation and Radiating Systems
	Radiation from extended sources
	Radiation from a one-dimensional current distribution
	Radiation from a two-dimensional current distribution
	Multipole radiation
	The Hertz potential
	Electric dipole radiation
	Magnetic dipole radiation
	Electric quadrupole radiation
	Radiation from a localised charge in arbitrary motion
	The Liénard-Wiechert potentials
	Radiation from an accelerated point charge
	Bremsstrahlung
	Cyclotron and synchrotron radiation
	Radiation from charges moving in matter

	Bibliography
	Examples
	Relativistic Electrodynamics
	The special theory of relativity
	The Lorentz transformation
	Lorentz space
	Minkowski space
	Covariant classical mechanics
	Covariant classical electrodynamics
	The four-potential
	The Liénard-Wiechert potentials
	The electromagnetic field tensor
	Bibliography
	Electromagnetic Fields and Particles
	Charged particles in an electromagnetic field
	Covariant equations of motion
	Covariant field theory
	Lagrange-Hamilton formalism for fields and interactions



	Bibliography
	Example
	Formulæ
	The electromagnetic field
	Maxwell's equations
	Fields and potentials
	Force and energy
	Electromagnetic radiation
	Relationship between the field vectors in a plane wave
	The far fields from an extended source distribution
	The far fields from an electric dipole
	The far fields from a magnetic dipole
	The far fields from an electric quadrupole
	The fields from a point charge in arbitrary motion
	Special relativity
	Metric tensor
	Covariant and contravariant four-vectors
	Lorentz transformation of a four-vector
	Invariant line element
	Four-velocity
	Four-momentum
	Four-current density
	Four-potential
	Field tensor
	Vector relations
	Spherical polar coordinates
	Vector formulae
	Bibliography
	Mathematical Methods
	Scalars, vectors and tensors
	Vectors
	Fields
	Vector algebra
	Vector analysis
	Analytical mechanics
	Lagrange's equations
	Hamilton's equations

	Examples

	Bibliography

	Index





























































































